Skip to main content

Advertisement

Log in

Cross-sectional study of bone metabolism with nutrition in adult classical phenylketonuric patients diagnosed by neonatal screening

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The mechanism underlying the development of osteopenia or osteoporosis in longstanding phenylketonuria (PKU) remains to be clarified. We investigated the details of bone metabolism in 21 female and 13 male classical PKU patients aged 20–35 years. Vitamin D (VD), parathyroid hormone (PTH), bone turnover markers, and daily nutrient intake were examined. The patients had lower daily energy and protein intake than did the age-matched controls (22 women, 14 men), but their respective fat, VD, and calcium intake did not differ. Serum 1,25-dihydroxy VD and 25-hydroxy VD levels in female and male patient groups were significantly higher and lower than those in respective control groups (females, P < 0.001; males, P < 0.05 and P < 0.01, respectively). Serum intact PTH levels were significantly higher in the female patient group (P < 0.05). Urinary calcium levels in the patient groups were significantly higher than those of the control subjects (females, P < 0.001; males, P < 0.05). Bone resorption markers were significantly higher in patients than in controls, although bone formation markers were not different. Patient serum levels of osteoprotegerin-inhibiting bone resorption were significantly lower (females, P < 0.001; males, P < 0.01). None of the bone parameters correlated significantly with serum phenylalanine or nutrient intake. PKU patients exhibited lower VD status and more rapid bone resorption despite normal calcium–VD intakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scriver CR, Kaufman S (2001) Hyperphenylalaninemia: phenylalanine hydroxylase deficiency. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 1667–1724

    Google Scholar 

  2. Curtius HC, Niederwieser A, Viscontini M, Leimbacher W, Wegmann H, Blehova B, Rey F, Schaub J, Schmidt H (1981) Serotonin and dopamine synthesis in phenylketonuria. Adv Exp Med Biol 133:277–291

    PubMed  CAS  Google Scholar 

  3. Herrero E, Aragon MC, Gimenez C, Valdivieso F (1983) Inhibition by l-phenylalanine of tryptophan transport by synaptosomal plasma membrane vesicles: implications in the pathogenesis of phenylketonuria. J Inherit Metab Dis 6:32–35

    Article  PubMed  CAS  Google Scholar 

  4. Burri R, Steffen C, Stieger S, Brodbeck U, Colombo JP, Herschkowitz N (1990) Reduced myelinogenesis and recovery in hyperphenylalaninemic rats. Correlation between brain phenylalanine levels, characteristic brain enzymes for myelination, and brain development. Mol Chem Neuropathol 13:57–69

    Article  PubMed  CAS  Google Scholar 

  5. Przyrembel H, Bremer HJ (2000) Nutrition, physical growth and bone density in treated phenylketonuria. Eur J Pediatr 159 (suppl 2):S129–S135

    Article  Google Scholar 

  6. Hillman L, Schlotzhauer C, Lee D, Grasela J, Witter S, Allen S, Hillman R (1996) Decreased bone mineralization in children with phenylketonuria under treatment. Eur J Pediatr 155 (suppl 1):S148–S152

    Article  Google Scholar 

  7. Schwahn B, Mokov E, Scheidhauer K, Lettgen B, Schönau E (1998) Decreased trabecular bone mineral density in patients with phenylketonuria measured by peripheral quantitative computed tomography. Acta Pediatr 87:61–63

    Article  CAS  Google Scholar 

  8. Barat P, Barthe N, Redonnet-Vernhet I, Parrot F (2002) The impact of the control of serum phenylalanine levels on osteopenia in patients with phenylketonuria. Eur J Pediatr 161:687–688

    Article  PubMed  CAS  Google Scholar 

  9. Millet P, Vilaseca MA, Valls C, Pérez-Dueñas B, Artuch R, Gómez L, Lambruschini N, Campistol J (2005) Is deoxypyridinoline a good resorption marker to detect osteopenia in phenylketonuria? Clin Biochem 38:1127–1132

    Article  PubMed  CAS  Google Scholar 

  10. Ambroszkiewicz J, Gajewska J, Laskowska-Klita T (2004) A study of bone turnover markers in prepubertal children with phenylketonuria. Eur J Pediatr 163:177–178

    Article  PubMed  Google Scholar 

  11. AI-Qadreh A, Schulpis KH, Athanasopoulou H, Mengreli C, Skarpalezou A, Voskaki I (1998) Bone mineral status in children with phenylketonuria under treatment. Acta Pediatr 87:1162–1166

    Article  Google Scholar 

  12. Modan-Moses D, Vered I, Schwartz G, Anikster Y, Abraham S, Segev R, Efrati O et al (2007) Peak bone mass in patients with phenylketonuria. J Inherit Metab Dis 30:202–208

    Article  PubMed  CAS  Google Scholar 

  13. Pagani F, Francucci CM, Moro L (2005) Markers of bone turnover: biochemical and clinical perspectives. J Endocrinol Invest 28 (suppl 10):8–13

    Google Scholar 

  14. Szulc P, Seeman E, Delmas PD (2000) Biochemical measurements of bone turnover in children and adolescents. Osteoporos Int 11:281–294

    Article  PubMed  CAS  Google Scholar 

  15. Tamada T, Sone T, Tomomitsu T, Jo Y, Tanaka H, Fukunaga M (2001) Biochemical markers for the detection of bone metastasis in patients with prostate cancer: diagnostic efficacy and the effect of hormonal therapy. J Bone Miner Metab 19:45–51

    Article  PubMed  CAS  Google Scholar 

  16. Wright HL, McCarthy HS, Middleton J, Marshall MJ (2009) RANK, RANKL and osteoprotegerin in bone biology and disease. Curr Rev Musculoskelet Med 2:56–64

    Article  PubMed  CAS  Google Scholar 

  17. Sahota O, Mundey MK, San P, Godber IM, Lawson N, Hosking DJ (2004) The relationship between vitamin D and parathyroid hormone: calcium homeostasis, bone turnover, and bone mineral density in postmenopausal women with established osteoporosis. Bone (NY) 35:312–319

    CAS  Google Scholar 

  18. Lips P, Duong T, Oleksik A, Black D, Cummings S, Cox D, Nickelsen T (2001) A global study of vitamin D status and parathyroid function in postmenopausal women with osteoporosis: baseline data from the multiple outcomes of raloxifene evaluation clinical trial. J Clin Endocrinol Metab 86:1212–1221

    Article  PubMed  CAS  Google Scholar 

  19. Takayanagi H (2005) Osteoimmunological insight into bone damage in rheumatoid arthritis. Mod Rheumatol 15:225–231

    Article  PubMed  Google Scholar 

  20. Takayanagi H, Sato K, Takaoka A, Taniguchi T (2005) Interplay between interferon and other cytokine systems in bone metabolism. Immunol Rev 208:181–193

    Article  PubMed  CAS  Google Scholar 

  21. Banfi G, Iorio EL, Corsi MM (2008) Oxidative stress, free radicals and bone remodeling. Clin Chem Lab Med 46:1550–1555

    Article  PubMed  CAS  Google Scholar 

  22. Altindag O, Erel O, Soran N, Celik H, Selek S (2008) Total oxidative/anti-oxidative status and relation to bone mineral density in osteoporosis. Rheumatol Int 28:317–321

    Article  PubMed  CAS  Google Scholar 

  23. Yannicelli S, Medeiros DM (2002) Elevated plasma phenylalanine concentrations may adversely affect bone status of phenylketonuric mice. J Inherit Metab Dis 25:347–361

    Article  PubMed  CAS  Google Scholar 

  24. Hargreaves IP (2007) Coenzyme Q10 in phenylketonuria and mevalonic aciduria. Mitochondrion 7 (suppl 1):S175–S180

    Article  Google Scholar 

  25. Shefer S, Tint GS, Jean-Guillaume D, Daikhin E, Kendler A, Nguyen LB, Yudkoff M, Dyer CA (2000) Is there a relationship between 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and forebrain pathology in the PKU mouse? J Neurosci Res 61:549–563

    Article  PubMed  CAS  Google Scholar 

  26. Sirtori LR, Dutra-Filho CS, Fitarelli D, Sitta A, Haeser A, Barschak AG, Wajner M, Coelho DM, Llesuy S, Belló-Klein A, Giugliani R, Deon M, Vargas CR (2005) Oxidative stress in patients with phenylketonuria. Biochim Biophys Acta 1740:68–73

    PubMed  CAS  Google Scholar 

  27. Artuch R, Colomé C, Sierra C, Brandi N, Lambruschini N, Campistol J, Ugarte D, Vilaseca MA (2004) A longitudinal study of antioxidant status in phenylketonuric patients. Clin Biochem 37:198–203

    Article  PubMed  CAS  Google Scholar 

  28. Sierra C, Vilaseca MA, Moyano D, Brandi N, Campistol J, Lambruschini N, Cambra FJ, Deulofeu R, Mira A (1998) Antioxidant status in hyperphenylalaninemia. Clin Chim Acta 276:1–9

    Article  PubMed  CAS  Google Scholar 

  29. Jevon M, Sabokbar A, Fujikawa Y, Hirayama T, Neale SD, Wass J, Athanasou NA (2002) Gender- and age-related differences in osteoclast formation from circulating precursors. J Endocrinol 172:673–681

    Article  PubMed  CAS  Google Scholar 

  30. Lormeau C, Soudan B, d’Herbomez M, Pigny P, Duquesnoy B, Cortet B et al (2004) Sex hormone-binding globulin, estradiol, and bone turnover markers in male osteoporosis. Bone (NY) 34:933–939

    CAS  Google Scholar 

  31. Frenkel B, Hong A, Baniwal SK, Coetzee GA, Ohlsson C, Khalid O, Gabet Y (2010) Regulation of adult bone turnover by sex steroids. J Cell Physiol 224:305–310

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hironori Nagasaka.

About this article

Cite this article

Nagasaka, H., Tsukahara, H., Takatani, T. et al. Cross-sectional study of bone metabolism with nutrition in adult classical phenylketonuric patients diagnosed by neonatal screening. J Bone Miner Metab 29, 737–743 (2011). https://doi.org/10.1007/s00774-011-0276-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-011-0276-6

Keywords

Navigation