Skip to main content

Advertisement

Log in

The tumor necrosis factor type 2 receptor plays a protective role in tumor necrosis factor-α-induced bone resorption lacunae on mouse calvariae

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Tumor necrosis factor (TNF)-α exerts its biological function via TNF type 1 and type 2 receptors (TNFR1 and TNFR2). We have previously reported that bone resorption induced by lipopolysaccharide (LPS) in TNFR2-deficient mice is accelerated compared to that in wild-type (WT) mice. Although these results suggested that TNFR2 might have a protective role in bone resorption, we could not exclude the possibility that TNFR2 has no role in bone resorption. To clarify the role of TNFR2, we developed a TNF-α-induced bone resorption model using cholesterol-bearing pullulan nanogel as a TNF-α carrier to minimize the influence of inflammatory cytokines other than TNF-α. Injections of human TNF-α (hTNF), an agonist of mouse TNFR1, stimulated bone resorption lacunae on the calvariae in WT mice, but mouse TNF-α (mTNF), an agonist of both mouse TNFR1 and TNFR2, could not. To eliminate the possibility that the TNFR1 agonistic effects of hTNF were stronger than those of mTNF, we used the same model in TNFR2-deficient mice. Injection of mTNF resulted in clear bone resorption lacunae to the same extent observed after using hTNF in the TNFR2-deficient mice. Histomorphometric analysis of osteoclast number supported the observed changes in bone resorption lacunae. These data suggest that TNFR2 has a protective role in TNF-α-induced bone resorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Haynes DR (2004) Bone lysis and inflammation. Inflamm Res 53:596–600

    Article  PubMed  CAS  Google Scholar 

  2. Takeuchi T, Yamanaka H, Inoue E, Nagasawa H, Nawata M, Ikari K, Saito K, Sekiguchi N, Sato E, Kameda H, Iwata S, Mochizuki T, Amano K, Tanaka Y (2008) Retrospective clinical study on the notable efficacy and related factors of infliximab therapy in a rheumatoid arthritis management group in Japan: one-year outcome of joint destruction (RECONFIRM-2J). Mod Rheumatol 18:447–454

    Article  PubMed  CAS  Google Scholar 

  3. Mayer Y, Balbir-Gurman A, Machtei EE (2009) Anti-tumor necrosis factor-alpha therapy and periodontal parameters in patients with rheumatoid arthritis. J Periodontol 80:1414–1420

    Article  PubMed  CAS  Google Scholar 

  4. Choy EH, Panayi GS (2001) Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med 344:907–916

    Article  PubMed  CAS  Google Scholar 

  5. Graves DT, Cochran D (2003) The contribution of interleukin-1 and tumor necrosis factor to periodontal tissue destruction. J Periodontol 74:391–401

    Article  PubMed  CAS  Google Scholar 

  6. Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, Nakagawa N, Kinosaki M, Yamaguchi K, Shima N, Yasuda H, Morinaga T, Higashio K, Martin TJ, Suda T (2000) Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL–RANK interaction. J Exp Med 191:275–286

    Article  PubMed  CAS  Google Scholar 

  7. Azuma Y, Kaji K, Katogi R, Takeshita S, Kudo A (2000) Tumor necrosis factor-alpha induces differentiation of and bone resorption by osteoclasts. J Biol Chem 275:4858–4864

    Article  PubMed  CAS  Google Scholar 

  8. Yogesha SD, Khapli SM, Srivastava RK, Mangashetti LS, Pote ST, Mishra GC, Wani MR (2009) IL-3 inhibits TNF-alpha-induced bone resorption and prevents inflammatory arthritis. J Immunol 182:361–370

    PubMed  CAS  Google Scholar 

  9. Saito H, Kojima T, Takahashi M, Horne WC, Baron R, Amagasa T, Ohya K, Aoki K (2007) A tumor necrosis factor receptor loop peptide mimic inhibits bone destruction to the same extent as anti-tumor necrosis factor monoclonal antibody in murine collagen-induced arthritis. Arthritis Rheum 56:1164–1174

    Article  PubMed  CAS  Google Scholar 

  10. Gupta S (2001) Molecular steps of tumor necrosis factor receptor-mediated apoptosis. Curr Mol Med 1:317–324

    Article  PubMed  CAS  Google Scholar 

  11. Kollias G, Douni E, Kassiotis G, Kontoyiannis D (1999) On the role of tumor necrosis factor and receptors in models of multiorgan failure, rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease. Immunol Rev 169:175–194

    Article  PubMed  CAS  Google Scholar 

  12. Wajant H, Pfizenmaier K, Scheurich P (2003) Tumor necrosis factor signaling. Cell Death Differ 10:45–65

    Article  PubMed  CAS  Google Scholar 

  13. Kollias G (2005) TNF pathophysiology in murine models of chronic inflammation and autoimmunity. Semin Arthritis Rheum 34:3–6

    Google Scholar 

  14. Abu-Amer Y, Ross FP, Edwards J, Teitelbaum SL (1997) Lipopolysaccharide-stimulated osteoclastogenesis is mediated by tumor necrosis factor via its P55 receptor. J Clin Invest 100:1557–1565

    Article  PubMed  CAS  Google Scholar 

  15. Hussain Mian A, Saito H, Alles N, Shimokawa H, Aoki K, Ohya K (2008) Lipopolysaccharide-induced bone resorption is increased in TNF type 2 receptor-deficient mice in vivo. J Bone Miner Metab 26:469–477

    PubMed  CAS  Google Scholar 

  16. Bossen C, Ingold K, Tardivel A, Bodmer JL, Gaide O, Hertig S, Ambrose C, Tschopp J, Schneider P (2006) Interactions of tumor necrosis factor (TNF) and TNF receptor family members in the mouse and human. J Biol Chem 281:13964–13971

    Article  PubMed  CAS  Google Scholar 

  17. Tartaglia LA, Goeddel DV (1992) Two TNF receptors. Immunol Today 13:151–153

    Article  PubMed  CAS  Google Scholar 

  18. Lewis M, Tartaglia LA, Lee A, Bennett GL, Rice GC, Wong GH, Chen EY, Goeddel DV (1991) Cloning and expression of cDNAs for two distinct murine tumor necrosis factor receptors demonstrate one receptor is species specific. Proc Natl Acad Sci USA 88:2830–2834

    Article  PubMed  CAS  Google Scholar 

  19. Nishikawa T, Akiyoshi K, Sunamoto J (1996) Macromolecular complexation between bovine serum albumin and the self-assembled hydrogel nanoparticle of hydrophobized polysaccharides. J Am Chem Soc 118:6110–6115

    Article  CAS  Google Scholar 

  20. Shimizu T, Kishida T, Hasegawa U, Ueda Y, Imanishi J, Yamagishi H, Akiyoshi K, Otsuji E, Mazda O (2008) Nanogel DDS enables sustained release of IL-12 for tumor immunotherapy. Biochem Biophys Res Commun 367:330–335

    Article  PubMed  CAS  Google Scholar 

  21. Akiyoshi K, Deguchi S, Moriguchi N, Yamaguchi S, Sunamoto J (1993) Self-aggregates of hydrophobized polysaccharides in water. Formation and characteristics of nanoparticles. Macromolecules 26:3062–3068

    Article  CAS  Google Scholar 

  22. Suzuki Y, Aoki K, Saito H, Umeda M, Nitta H, Baron R, Ohya K (2006) A tumor necrosis factor-alpha antagonist inhibits inflammatory bone resorption induced by Porphyromonas gingivalis infection in mice. J Periodont Res 41:81–91

    Article  PubMed  CAS  Google Scholar 

  23. Soysa NS, Alles N, Weih D, Lovas A, Mian AH, Shimokawa H, Yasuda H, Weih F, Jimi E, Ohya K, Aoki K (2010) The pivotal role of the alternative NF-kappaB pathway in maintenance of basal bone homeostasis and osteoclastogenesis. J Bone Miner Res 25:809–818

    Google Scholar 

  24. Koga T, Matsui Y, Asagiri M, Kodama T, de Crombrugghe B, Nakashima K, Takayanagi H (2005) NFAT and Osterix cooperatively regulate bone formation. Nat Med 11:880–885

    Article  PubMed  CAS  Google Scholar 

  25. Aoki K, Didomenico E, Sims NA, Mukhopadhyay K, Neff L, Houghton A, Amling M, Levy JB, Horne WC, Baron R (1999) The tyrosine phosphatase SHP-1 is a negative regulator of osteoclastogenesis and osteoclast resorbing activity: increased resorption and osteopenia in me(v)/me(v) mutant mice. Bone (NY) 25:261–267

    CAS  Google Scholar 

  26. Tomomatsu N, Aoki K, Alles N, Soysa NS, Hussain A, Nakachi H, Kita S, Shimokawa H, Ohya K, Amagasa T (2009) LPS-induced inhibition of osteogenesis is TNF-alpha dependent in a murine tooth extraction model. J Bone Miner Res 24:1770–1781

    Article  PubMed  CAS  Google Scholar 

  27. Kitaura H, Sands MS, Aya K, Zhou P, Hirayama T, Uthgenannt B, Wei S, Takeshita S, Novack DV, Silva MJ, Abu-Amer Y, Ross FP, Teitelbaum SL (2004) Marrow stromal cells and osteoclast precursors differentially contribute to TNF-alpha-induced osteoclastogenesis in vivo. J Immunol 173:4838–4846

    PubMed  CAS  Google Scholar 

  28. Kitaura H, Zhou P, Kim HJ, Novack DV, Ross FP, Teitelbaum SL (2005) M-CSF mediates TNF-induced inflammatory osteolysis. J Clin Invest 115:3418–3427

    Article  PubMed  CAS  Google Scholar 

  29. Yoshimatsu M, Kitaura H, Fujimura Y, Eguchi T, Kohara H, Morita Y, Yoshida N (2009) IL-12 inhibits TNF-alpha induced osteoclastogenesis via a T cell-independent mechanism in vivo. Bone (NY) 45:1010–1016

    CAS  Google Scholar 

  30. Kim HJ, Chang EJ, Kim HM, Lee SB, Kim HD, Su Kim G, Kim HH (2006) Antioxidant alpha-lipoic acid inhibits osteoclast differentiation by reducing nuclear factor-kappaB DNA binding and prevents in vivo bone resorption induced by receptor activator of nuclear factor-kappaB ligand and tumor necrosis factor-alpha. Free Radic Biol Med 40:1483–1493

    Article  PubMed  CAS  Google Scholar 

  31. Dempsey PW, Doyle SE, He JQ, Cheng G (2003) The signaling adaptors and pathways activated by TNF superfamily. Cytokine Growth Factor Rev 14:193–209

    Article  PubMed  CAS  Google Scholar 

  32. Feng X (2005) Regulatory roles and molecular signaling of TNF family members in osteoclasts. Gene (Amst) 350:1–13

    Article  CAS  Google Scholar 

  33. Hauer J, Puschner S, Ramakrishnan P, Simon U, Bongers M, Federle C, Engelmann H (2005) TNF receptor (TNFR)-associated factor (TRAF) 3 serves as an inhibitor of TRAF2/5-mediated activation of the noncanonical NF-kappaB pathway by TRAF-binding TNFRs. Proc Natl Acad Sci USA 102:2874–2879

    Article  PubMed  CAS  Google Scholar 

  34. Rothe M, Sarma V, Dixit VM, Goeddel DV (1995) TRAF2-mediated activation of NF-kappa B by TNF receptor 2 and CD40. Science 269:1424–1427

    Article  PubMed  CAS  Google Scholar 

  35. Song HY, Regnier CH, Kirschning CJ, Goeddel DV, Rothe M (1997) Tumor necrosis factor (TNF)-mediated kinase cascades: bifurcation of nuclear factor-kappaB and c-jun N-terminal kinase (JNK/SAPK) pathways at TNF receptor-associated factor 2. Proc Natl Acad Sci USA 94:9792–9796

    Article  PubMed  CAS  Google Scholar 

  36. Kanazawa K, Kudo A (2005) TRAF2 is essential for TNF-alpha-induced osteoclastogenesis. J Bone Miner Res 20:840–847

    Article  PubMed  CAS  Google Scholar 

  37. Kanazawa K, Azuma Y, Nakano H, Kudo A (2003) TRAF5 functions in both RANKL- and TNFalpha-induced osteoclastogenesis. J Bone Miner Res 18:443–450

    Article  PubMed  CAS  Google Scholar 

  38. Zarnegar B, Yamazaki S, He JQ, Cheng G (2008) Control of canonical NF-kappaB activation through the NIK-IKK complex pathway. Proc Natl Acad Sci USA 105:3503–3508

    Article  PubMed  CAS  Google Scholar 

  39. Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL (2000) TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest 106:1481–1488

    Article  PubMed  CAS  Google Scholar 

  40. Pfeilschifter J, Chenu C, Bird A, Mundy GR, Roodman GD (1989) Interleukin-1 and tumor necrosis factor stimulate the formation of human osteoclastlike cells in vitro. J Bone Miner Res 4:113–118

    Article  PubMed  CAS  Google Scholar 

  41. Thomson BM, Mundy GR, Chambers TJ (1987) Tumor necrosis factors alpha and beta induce osteoblastic cells to stimulate osteoclastic bone resorption. J Immunol 138:775–779

    PubMed  CAS  Google Scholar 

  42. Zhang YH, Heulsmann A, Tondravi MM, Mukherjee A, Abu-Amer Y (2001) Tumor necrosis factor-alpha (TNF) stimulates RANKL-induced osteoclastogenesis via coupling of TNF type 1 receptor and RANK signaling pathways. J Biol Chem 276:563–568

    Article  PubMed  CAS  Google Scholar 

  43. Rauert H, Wicovsky A, Muller N, Siegmund D, Spindler V, Waschke J, Kneitz C, Wajant H (2010) Membrane tumor necrosis factor (TNF) induces p100 processing via TNF receptor-2 (TNFR2). J Biol Chem 285:7394–7404

    Article  PubMed  CAS  Google Scholar 

  44. Zenger S, Ek-Rylander B, Andersson G (2010) Long bone osteoclasts display an augmented osteoclast phenotype compared to calvarial osteoclasts. Biochem Biophys Res Commun 394:743–749

    Article  PubMed  CAS  Google Scholar 

  45. Everts V, de Vries TJ, Helfrich MH (2009) Osteoclast heterogeneity: lessons from osteopetrosis and inflammatory conditions. Biochim Biophys Acta 1792:757–765

    PubMed  CAS  Google Scholar 

  46. Kishi T, Hagino H, Kishimoto H, Nagashima H (1998) Bone responses at various skeletal sites to human parathyroid hormone in ovariectomized rats: effects of long-term administration, withdrawal, and readministration. Bone (NY) 22:515–522

    CAS  Google Scholar 

  47. Wilson MR, Goddard ME, O’Dea KP, Choudhury S, Takata M (2007) Differential roles of p55 and p75 tumor necrosis factor receptors on stretch-induced pulmonary edema in mice. Am J Physiol Lung Cell Mol Physiol 293:L60–L68

    Article  PubMed  CAS  Google Scholar 

  48. Balosso S, Ravizza T, Perego C, Peschon J, Campbell IL, De Simoni MG, Vezzani A (2005) Tumor necrosis factor-alpha inhibits seizures in mice via p75 receptors. Ann Neurol 57:804–812

    Article  PubMed  CAS  Google Scholar 

  49. Kondo S, Sauder DN (1997) Tumor necrosis factor (TNF) receptor type 1 (p55) is a main mediator for TNF-alpha-induced skin inflammation. Eur J Immunol 27:1713–1718

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. A. Yamaguchi and Prof. K. Moriyama (Tokyo Medical and Dental University) for their helpful suggestions. This work was supported by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan, to K. O. (19390471) and K. A. (17659584 and 19390472).

Conflict of interest

All authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Aoki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPEG 922 kb)

About this article

Cite this article

Nagano, K., Alles, N., Mian, A.H. et al. The tumor necrosis factor type 2 receptor plays a protective role in tumor necrosis factor-α-induced bone resorption lacunae on mouse calvariae. J Bone Miner Metab 29, 671–681 (2011). https://doi.org/10.1007/s00774-011-0270-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-011-0270-z

Keywords

Navigation