Skip to main content

Advertisement

Log in

Hip bone strength indices in overweight and control adolescent boys

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The influence of being overweight on bone strength in adolescents remains controversial. The aim of this study was to compare hip bone strength indices in overweight and control adolescent boys using hip structure analysis (HSA). This study included 25 overweight adolescent boys [body mass index (BMI) >25 kg/m2] and 31 maturation-matched controls (BMI <25 kg/m2). Body composition and bone mineral density were assessed by dual-energy X-ray absorptiometry (DXA). To evaluate hip bone strength, DXA scans were analyzed at femoral neck, intertrochanteric, and femoral shaft by the HSA program. Cross-sectional area (CSA), an index of axial compression strength, section modulus (Z), an index of bending strength, cross-sectional moment of inertia (CSMI), cortical thickness (CT), and buckling ratio (BR) were measured from bone mass profiles. Body weight, lean mass, fat mass, and BMI were higher in overweight boys compared to controls (P < 0.001). CSA, CSMI, and Z of the three sites (femoral neck, intertrochanteric, and femoral shaft) were higher in overweight boys compared to controls (P < 0.01). BR was not significantly different between the two groups at the three sites. After adjustment for either body weight, BMI, or fat mass, using a one-way analysis of covariance, there were no differences between the two groups regarding the HSA variables (CSA, Z, CSMI, CT, and BR). After adjusting for lean mass, overweight boys displayed higher values of femoral shaft CSA, CSMI, and Z in comparison to controls (P < 0.05). In conclusion, this study suggests that overweight adolescent boys have greater indices of bone axial and bending strength in comparison to controls at the femoral neck, the intertrochanteric, and the femoral shaft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. El Hage R, Jacob C, Moussa E, Benhamou CL, Jaffré C (2009) Total body, lumbar spine and hip bone mineral density in overweight adolescent girls: decreased or increased? J Bone Miner Metab 27:629–633

    Article  PubMed  Google Scholar 

  2. Leonard MB, Shults J, Wilson BA, Tershakovec AM, Zemel BS (2004) Obesity during childhood and adolescence augments bone mass and bone dimensions. Am J Clin Nutr 80:514–523

    PubMed  CAS  Google Scholar 

  3. Ellis KJ, Shypailo RJ, Wong WW, Abrams SA (2003) Bone mineral mass in overweight and obese children: diminished or enhanced? Acta Diabetol 40:S274–S277

    Article  PubMed  Google Scholar 

  4. De Schepper J, Van den Broeck M, Jonckheer M (1995) Study of lumbar spine bone mineral density in obese children. Acta Paediatr 84:313–315

    Article  PubMed  Google Scholar 

  5. Rocher E, Chappard C, Jaffré C, Benhamou CL, Courteix D (2008) Bone mineral density in prepubertal obese and control children: relation to body weight, lean mass, and fat mass. J Bone Miner Metab 26:73–78

    Article  PubMed  Google Scholar 

  6. Manzoni P, Brambilla P, Pietrobelli A, Beccaria L, Bianchessi A, Mora S, Chiumello G (1996) Influence of body composition on bone mineral content in children and adolescents. Am J Clin Nutr 64:603–607

    PubMed  CAS  Google Scholar 

  7. Goulding A, Taylor RW, Jones IE, Manning PJ, Williams SM (2002) Spinal overload: a concern for obese children and adolescents? Osteoporos Int 13:835–840

    Article  PubMed  CAS  Google Scholar 

  8. Hasanoglu A, Bideci A, Cinaz P, Tumer L, Unal S (2000) Bone mineral density in childhood obesity. J Pediatr Endocrinol Metab 13:307–311

    Article  PubMed  CAS  Google Scholar 

  9. El Hage R, Moussa E, Jacob C (2010) Bone mineral content and density in obese, overweight and normal-weighted sedentary adolescent girls. J Adolesc Health 47:591–595

    Article  PubMed  Google Scholar 

  10. El Hage R, Jacob C, Moussa E, Groussard C, Pineau JC, Benhamou CL, Jaffré C (2009) Influence of the weight status on bone mineral content and bone mineral density in a group of Lebanese adolescent girls. Joint Bone Spine 76:680–684

    Article  PubMed  Google Scholar 

  11. El Hage R, Moussa E, Jacob C (2010) Femoral neck geometry in overweight and normal weight adolescent girls. J Bone Miner Metab 28:595–600

    Article  PubMed  Google Scholar 

  12. Ducher G, Bass S, Naughton GA, Eser P, Telford RD, Daly RM (2009) Overweight children have a greater proportion of fat mass relative to muscle mass in the upper limbs than in the lower limbs: implications for bone strength at the distal forearm. Am J Clin Nutr 90:1104–1111

    Article  PubMed  CAS  Google Scholar 

  13. Farr JN, Chen Z, Lisse JR, Lohman TG, Going SB (2010) Relationship of total body fat mass to weight-bearing bone volumetric density, geometry, and strength in young girls. Bone (NY) 46:977–984

    Google Scholar 

  14. Wetzsteon RJ, Petit MA, Macdonald HM, Hughes JM, Beck TJ, McKay HA (2008) Bone structure and volumetric BMD in overweight children: a longitudinal study. J Bone Miner Res 23:1946–1953

    Article  PubMed  Google Scholar 

  15. Petit MA, Beck TJ, Shults J, Zemel BS, Foster BJ, Leonard MB (2005) Proximal femur bone geometry is appropriately adapted to lean mass in overweight children and adolescents. Bone (NY) 36:568–576

    Google Scholar 

  16. Fulton JP (1999) New guidelines for the prevention and treatment of osteoporosis. National Osteoporosis Foundation. Med Health R I 82:110–111

    PubMed  CAS  Google Scholar 

  17. Beck TJ, Ruff CB, Warden KE, Scott WW Jr, Rao GU (1990) Predicting femoral neck strength from bone mineral data. A structural approach. Invest Radiol 25:6–18

    Article  PubMed  CAS  Google Scholar 

  18. Martin RB, Burr DB (1984) Non-invasive measurement of long bone cross-sectional moment of inertia by photon absorptiometry. J Biomech 3:195–201

    Article  Google Scholar 

  19. Forwood MR, Bailey DA, Beck TJ, Mirwald RL, Baxter-Jones AD, Uusi-Rasi K (2004) Sexual dimorphism of the femoral neck during the adolescent growth spurt: a structural analysis. Bone (NY) 35:973–981

    Google Scholar 

  20. Janz KF, Gilmore JM, Levy SM, Letuchy EM, Burns TL, Beck TJ (2007) Physical activity and femoral neck bone strength during childhood: the Iowa Bone Development Study. Bone (NY) 41:216–222

    Google Scholar 

  21. McKay HA, MacLean L, Petit M, Mackelvie-O’Brien K, Janssen P, Beck T, Khan KM (2005) ‘‘Bounce at the Bell’’: a novel program of short bouts of exercise improves proximal femur bone mass in early pubertal children. Br J Sports Med 39:521–526

    Article  PubMed  CAS  Google Scholar 

  22. El Hage R, Jacob C, Moussa E, Youssef H, Groussard C, Pineau JC, Jaffré C (2008) Leptin, insulin, IGF-1 and bone mass in a group of sedentary adolescent girls. J Med Liban 56:220–225

    PubMed  Google Scholar 

  23. Beck T, Looker A, Ruff C, Sievanen H, Wahner H (2000) Structural trends in the aging femoral neck and proximal shaft: analysis of the Third National Health and Nutrition Examination Survey (NHANES) dual-energy X-ray absorptiometry data. J Bone Miner Res 15:2297–2304

    Article  PubMed  CAS  Google Scholar 

  24. Yates LB, Karasik D, Beck TJ, Cupples LA, Kiel DP (2007) Hip structural geometry in old-old age: similarities and differences between men and women. Bone (NY) 41:722–732

    Google Scholar 

  25. Crabtree N, Lunt M, Holt G, Kröger H, Burger H, Grazio S et al (2000) Hip geometry, bone mineral distribution, and bone strength in European men and women: the EPOS study. Bone (NY) 27:151–159

    CAS  Google Scholar 

  26. Khoo BC, Beck TJ, Qiao QH, Parakh P, Semanick L, Prince RL, Singer KP, Price RI (2005) In vivo short-term precision of hip structure analysis variables in comparison with bone mineral density using paired dual-energy X-ray absorptiometry scans from multi-center clinical trials. Bone (NY) 37:112–121

    Google Scholar 

  27. Duke PM, Litt IF, Gross RT (1980) Adolescents’ self assessment of sexual maturation. Pediatrics 66:918–920

    PubMed  CAS  Google Scholar 

  28. Fardellone P, Sebert JL, Bouraga M, Bonidan O, Leclercq G, Doutrellot C, Bellony R (1991) Evaluation of the calcium content of diet by frequential self-questionnaire. Rev Rhum Mal Osteoartic 58:99–103

    PubMed  CAS  Google Scholar 

  29. El Hage R, Jacob C, Moussa E, Jaffré C, Benhamou CL (2009) Daily calcium intake and body mass index in a group of Lebanese adolescents. J Med Liban 57:253–257

    PubMed  Google Scholar 

  30. Gordon CM, Bachrach LK, Carpenter TO, Crabtree N, El-Hajj Fuleihan G, Kutilek S, Lorenc RS, Tosi LL, Ward KA, Ward LM, Kalkwarf HJ (2008) Dual energy X-ray absorptiometry interpretation and reporting in children and adolescents: the 2007 ISCD Pediatric Official Positions. J Clin Densitom 11:43–58

    Article  PubMed  Google Scholar 

  31. Płudowski P, Lebiedowski M, Olszaniecka M, Marowska J, Matusik H, Lorenc RS (2006) Idiopathic juvenile osteoporosis: an analysis of the muscle–bone relationship. Osteoporos Int 17:1681–1690

    Article  PubMed  Google Scholar 

  32. Petit MA, Beck TJ, Kontulainen SA (2005) Examining the developing bone: what do we measure and how do we do it? J Musculoskelet Neuronal Interact 5:213–224

    PubMed  CAS  Google Scholar 

  33. Frost HM (2003) Bone’s mechanostat: a 2003 update. Anat Rec 275:1081–1101

    Article  Google Scholar 

  34. Rauch F, Bailey D, Baxter-Jones A, Mirwald R, Faulkner R (2004) The muscle–bone unit during the pubertal growth spurt. Bone (NY) 34:771–775

    Google Scholar 

  35. Travison TG, Araujo AB, Esche GR, Beck TJ, McKinlay JB (2008) Lean mass and not fat mass is associated with male proximal femur strength. J Bone Miner Res 23:189–198

    Article  PubMed  Google Scholar 

  36. El Hage R, Courteix D, Benhamou CL, Jacob C, Jaffré C (2009) Relative importance of lean and fat mass on bone mineral density in a group of adolescent boys and girls. Eur J Appl Physiol 105:759–764

    Article  PubMed  Google Scholar 

  37. Bonjour JP, Chevalley T, Rizzoli R, Ferrari S (2007) Gene–environment interactions in the skeletal response to nutrition and exercise during growth. Med Sport Sci 51:64–80

    Article  PubMed  Google Scholar 

  38. Bonnick SL (2007) HSA: beyond BMD with DXA. Bone (NY) 41:S9–S12

    Google Scholar 

  39. Beck T (2003) Measuring the structural strength of bones with dual-energy X-ray absorptiometry: principles, technical limitations, and future possibilities. Osteoporos Int 14:S81–S88

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Research Council of the University of Balamand, Lebanon.

Conflict of interest

The authors state that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rawad El Hage.

About this article

Cite this article

El Hage, Z., Theunynck, D., Jacob, C. et al. Hip bone strength indices in overweight and control adolescent boys. J Bone Miner Metab 29, 691–698 (2011). https://doi.org/10.1007/s00774-011-0267-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-011-0267-7

Keywords

Navigation