Skip to main content
Log in

Bone geometry and strength adaptations to physical constraints inherent in different sports: comparison between elite female soccer players and swimmers

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Sports training characterized by impacts or weight-bearing activity is well known to induce osteogenic effects on the skeleton. Less is known about the potential effects on bone strength and geometry, especially in female adolescent athletes. The aim of this study was to investigate hip geometry in adolescent soccer players and swimmers compared to normal values that stemmed from a control group. This study included 26 swimmers (SWIM; 15.9 ± 2 years) and 32 soccer players (SOC; 16.2 ± 0.7 years), matched in body height and weight. A group of 15 age-matched controls served for the calculation of hip parameter Z-scores. Body composition and bone mineral density (BMD) were assessed by dual-energy X-ray absorptiometry (DXA). DXA scans were analyzed at the femoral neck by the hip structure analysis (HSA) program to calculate the cross-sectional area (CSA), cortical dimensions (inner endocortical diameter, ED; outer width and thickness, ACT), the centroid (CMP), cross-sectional moment of inertia (CSMI), section modulus (Z), and buckling ratio (BR) at the narrow neck (NN), intertrochanteric (IT), and femoral shaft (FS) sites. Specific BMDs were significantly higher in soccer players compared with swimmers. At all bone sites, every parameter reflecting strength (CSMI, Z, BR) favored soccer players. In contrast, swimmers had hip structural analysis (HSA) Z-scores below the normal values of the controls, thus denoting weaker bone in swimmers. In conclusion, this study suggests an influence of training practice not only on BMD values but also on bone geometry parameters. Sports with high impacts are likely to improve bone strength and bone geometry. Moreover, this study does not support the argument that female swimmers can be considered sedentary subjects regarding bone characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alfredson H, Nordstrom P, Lorentzon R (1996) Total and regional bone mass in female soccer players. Calcif Tissue Int 59:438–442

    PubMed  CAS  Google Scholar 

  2. Grimston SK, Willows ND, Hanley DA (1993) Mechanical loading regime and its relationship to bone mineral density in children. Med Sci Sports Exerc 25:1203–1210

    PubMed  CAS  Google Scholar 

  3. Dyson K, Blimkie CJ, Davison KS, Webber CE, Adachi JD (1997) Gymnastic training and bone density in pre-adolescent females. Med Sci Sports Exerc 29:443–450

    PubMed  CAS  Google Scholar 

  4. Courteix D, Lespessailles E, Peres SL, Obert P, Germain P, Benhamou CL (1998) Effect of physical training on bone mineral density in prepubertal girls: a comparative study between impact-loading and non-impact-loading sports. Osteoporos Int 8:152–158

    Article  PubMed  CAS  Google Scholar 

  5. Fuchs RK, Bauer JJ, Snow CM (2001) Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J Bone Miner Res 16:148–156

    Article  PubMed  CAS  Google Scholar 

  6. Haapasalo H, Kontulainen S, Sievänen H, Kannus P, Järvinen M, Vuori I (2000) Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: a peripheral quantitative computed tomography study of the upper arms of male tennis players. Bone (NY) 27:351–357

    CAS  Google Scholar 

  7. Heinonen A, Sievanen H, Kannus P, Oja P, Vuori I (2002) Site-specific skeletal response to long-term weight-training seems to be attributable to principal loading modality: a pQCT study of female weightlifters. Calcif Tissue Int 70:469–474

    Article  PubMed  CAS  Google Scholar 

  8. Liu L, Maruno R, Mashimo T, Sanka K, Higuchi T, Hayashi K, Shirasaki Y, Mukai N, Saitoh S, Tokuyama K (2003) Effects of physical training on cortical bone at midtibia assessed by peripheral QCT. J Appl Physiol 95:219–224

    PubMed  Google Scholar 

  9. Pettersson U, Nordstrom P, Alfredson H, Henriksson-Larsen K, Lorentzon R (2000) Effect of high impact activity on bone mass and size in adolescent females: a comparative study between two different types of sports. Calcif Tissue Int 67:207–214

    Article  PubMed  CAS  Google Scholar 

  10. Beck TJ, Ruff CB, Warden KE, Scott WW Jr, Rao GU (1990) Predicting femoral neck strength from bone mineral data. A structural approach. Invest Radiol 25:6–18

    Article  PubMed  CAS  Google Scholar 

  11. Parfitt AM (1994) The two faces of growth: benefits and risks to bone integrity. Osteoporos Int 4:382–398

    Article  PubMed  CAS  Google Scholar 

  12. Peppler WW, Mazess RB (1981) Total body bone mineral and lean body mass by dual-photon absorptiometry. I. Theory and measurement procedure. Calcif Tissue Int 33:353–359

    Article  PubMed  CAS  Google Scholar 

  13. Haarbo J, Gotfredsen A, Hassager C, Christiansen C (1991) Validation of body composition by dual energy X-ray absorptiometry (DEXA). Clin Physiol 11:331–341

    Article  PubMed  CAS  Google Scholar 

  14. Breban S, Benhamou CL, Chappard C (2009) Dual-energy X-ray absorptiometry assessment of tibial mid-third bone mineral density in young athletes. J Clin Densitom 12:22–27

    Article  PubMed  Google Scholar 

  15. Lorentzon M, Mellstrom D, Ohlsson C (2005) Age of attainment of peak bone mass is site specific in Swedish men: the GOOD study. J Bone Miner Res 20:1223–1227

    Article  PubMed  Google Scholar 

  16. Martin RB, Burr DB (1984) Non-invasive measurement of long bone cross-sectional moment of inertia by photon absorptiometry. J Biomech 17:195–201

    Article  PubMed  CAS  Google Scholar 

  17. Beck TJ, Petit MA, Wu G, LeBoff MS, Cauley JA, Chen Z (2009) Does obesity really make the femur stronger? BMD, geometry, and fracture incidence in the women’s health initiative-observational study. J Bone Miner Res 24:1369–1379

    Article  PubMed  Google Scholar 

  18. Bonnick SL (2007) HSA: beyond BMD with DXA. Bone (NY) 41:S9–S12

    Google Scholar 

  19. Fardellone P, Sebert JL, Bouraya M, Bonidan O, Leclercq G, Doutrellot C, Bellony R, Dubreuil A (1991) Evaluation of the calcium content of diet by frequential self-questionnaire. Rev Rhum Mal Osteoartic 58:99–103

    PubMed  CAS  Google Scholar 

  20. Nikander R, Sievanen H, Heinonen A, Kannus P (2005) Femoral neck structure in adult female athletes subjected to different loading modalities. J Bone Miner Res 20:520–528

    Article  PubMed  Google Scholar 

  21. Zouch M, Jaffre C, Thomas T, Frere D, Courteix D, Vico L, Alexandre C (2008) Long-term soccer practice increases bone mineral content gain in prepubescent boys. Jt Bone Spine 75:41–49

    Article  Google Scholar 

  22. Vicente-Rodriguez G, Ara I, Perez-Gomez J, Serrano-Sanchez JA, Dorado C, Calbet JA (2004) High femoral bone mineral density accretion in prepubertal soccer players. Med Sci Sports Exerc 36:1789–1795

    Article  PubMed  Google Scholar 

  23. Vicente-Rodriguez G, Jimenez-Ramirez J, Ara I, Serrano-Sanchez JA, Dorado C, Calbet JA (2003) Enhanced bone mass and physical fitness in prepubescent footballers. Bone (NY) 33:853–859

    CAS  Google Scholar 

  24. Calbet JA, Dorado C, Diaz-Herrera P, Rodriguez-Rodriguez LP (2001) High femoral bone mineral content and density in male football (soccer) players. Med Sci Sports Exerc 33:1682–1687

    Article  PubMed  CAS  Google Scholar 

  25. Wittich A, Mautalen CA, Oliveri MB, Bagur A, Somoza F, Rotemberg E (1998) Professional football (soccer) players have a markedly greater skeletal mineral content, density and size than age- and BMI-matched controls. Calcif Tissue Int 63:112–117

    Article  PubMed  CAS  Google Scholar 

  26. Courteix D, Jaffre C, Lespessailles E, Benhamou L (2005) Cumulative effects of calcium supplementation and physical activity on bone accretion in premenarchal children: a double-blind randomised placebo-controlled trial. Int J Sports Med 26:332–338

    Article  PubMed  CAS  Google Scholar 

  27. Derman O, Cinemre A, Kanbur N, Dogan M, Kilic M, Karaduman E (2008) Effect of swimming on bone metabolism in adolescents. Turk J Pediatr 50:149–154

    PubMed  Google Scholar 

  28. Nikander R, Kannus P, Dastidar P, Hannula M, Harrison L, Cervinka T, Narra NG, Aktour R, Arola T, Eskola H, Soimakallio S, Heinonen A, Hyttinen J, Sievanen H (2009) Targeted exercises against hip fragility. Osteoporos Int 20:1321–1328

    Article  PubMed  CAS  Google Scholar 

  29. Bass SL, Saxon L, Daly RM, Turner CH, Robling AG, Seeman E, Stuckey S (2002) The effect of mechanical loading on the size and shape of bone in pre-, peri-, and postpubertal girls: a study in tennis players. J Bone Miner Res 17:2274–2280

    Article  PubMed  CAS  Google Scholar 

  30. Robling AG, Hinant FM, Burr DB, Turner CH (2002) Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. J Bone Miner Res 17:1545–1554

    Article  PubMed  Google Scholar 

  31. Seeman E (2001) Sexual dimorphism in skeletal size, density, and strength. J Clin Endocrinol Metab 86:4576–4584

    Article  CAS  Google Scholar 

  32. Seeman E (2002) An exercise in geometry. J Bone Miner Res 17:373–380

    Article  PubMed  Google Scholar 

  33. Hsieh YF, Robling AG, Ambrosius WT, Burr DB, Turner CH (2001) Mechanical loading of diaphyseal bone in vivo: the strain threshold for an osteogenic response varies with location. J Bone Miner Res 16:2291–2297

    Article  PubMed  CAS  Google Scholar 

  34. Ruff CB, Walker A, Trinkaus E (1994) Postcranial robusticity in Homo. III: Ontogeny. Am J Phys Anthropol 93:35–54

    Article  PubMed  CAS  Google Scholar 

  35. DiVasta AD, Beck TJ, Petit MA, Feldman HA, LeBoff MS, Gordon CM (2007) Bone cross-sectional geometry in adolescents and young women with anorexia nervosa: a hip structural analysis study. Osteoporos Int 18:797–804

    Article  PubMed  CAS  Google Scholar 

  36. Duncan CS, Blimkie CJ, Kemp A, Higgs W, Cowell CT, Woodhead H, Briody JN, Howman-Giles R (2002) Mid-femur geometry and biomechanical properties in 15- to 18-yr-old female athletes. Med Sci Sports Exerc 34:673–681

    Article  PubMed  Google Scholar 

  37. Frost HM (1997) On our age-related bone loss: insights from a new paradigm. J Bone Miner Res 12:1539–1546

    Article  PubMed  CAS  Google Scholar 

  38. Schoenau E, Frost HM (2002) The “muscle–bone unit” in children and adolescents. Calcif Tissue Int 70:405–407

    Article  PubMed  CAS  Google Scholar 

  39. Courteix D, Lespessailles E, Peres SL, Obert P, Germain P, Benhamou CL (1998) Effect of physical training on bone mineral density in prepubertal girls: a comparative study between impact-loading and non-impact-loading sports. Osteoporos Int 8:152–158

    Article  PubMed  CAS  Google Scholar 

  40. Dook JE, James C, Henderson NK, Price RI (1997) Exercise and bone mineral density in mature female athletes. Med Sci Sports Exerc 29:291–296

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the subjects and their managers for their participation in this study. This work was supported by a grant from the French Football Federation (Fédération Française de Football).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Courteix.

About this article

Cite this article

Ferry, B., Duclos, M., Burt, L. et al. Bone geometry and strength adaptations to physical constraints inherent in different sports: comparison between elite female soccer players and swimmers. J Bone Miner Metab 29, 342–351 (2011). https://doi.org/10.1007/s00774-010-0226-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-010-0226-8

Keywords

Navigation