Journal of Bone and Mineral Metabolism

, Volume 29, Issue 3, pp 279–290 | Cite as

Characterization of the osteoblast-specific transmembrane protein IFITM5 and analysis of IFITM5-deficient mice

  • Nobutaka Hanagata
  • Xianglan Li
  • Hiromi Morita
  • Taro Takemura
  • Jie Li
  • Takashi Minowa
Original Article

Abstract

Interferon-inducible transmembrane protein 5 (IFITM5) is an osteoblast-specific membrane protein whose expression peaks around the early mineralization stage during the osteoblast maturation process. To investigate IFITM5 function, we first sought to identify which proteins interact with IFITM5. Liquid chromatography mass spectrometry revealed that FK506-binding protein 11 (FKBP11) co-immunoprecipitated with IFITM5. FKBP11 is the only protein it was found to interact with in osteoblasts, while IFITM5 interacts with several proteins in fibroblasts. FKBPs are involved in protein folding and immunosuppressant binding, but we could not be sure that IFITM5 participated in these activities when bound to FKBP11. Thus, we generated Ifitm5-deficient mice and analyzed their skeletal phenotypes. The skeletons, especially the long bones, of homozygous mutants (Ifitm5−/−) were smaller than those of heterozygous mutants (Ifitm5+/−), although we did not observe any significant differences in bone morphometric parameters. The effect of Ifitm5 deficiency on bone formation was more significant in newborns than in young and adult mice, suggesting that Ifitm5 deficiency might have a greater effect on prenatal bone development. Overall, the effect of Ifitm5 deficiency on bone formation was less than we expected. We hypothesize that this may have resulted from a compensatory mechanism in Ifitm5-deficient mice.

Keywords

IFITM5 Osteoblasts Protein interaction Knockout mice Bone growth 

References

  1. 1.
    Hanagata N, Takemura T, Monkawa A, Ikoma T, Tanaka J (2007) Phenotype and gene expression pattern of osteoblast-like cells cultured on polystyrene and hydroxyapatite with pre-adsorbed type-I collagen. J Biomed Mater Res Part A 83A:362–371CrossRefGoogle Scholar
  2. 2.
    Lange UC, Saitou M, Western PS, Barton SC, Surani MA (2003) The fragilis interferon-inducible gene family of transmembrane proteins is associated with germ cell specification in mice. BMC Dev Biol 3:1–11PubMedCrossRefGoogle Scholar
  3. 3.
    Evans SS, Lee DB, Han T, Tomasi TB, Evans RL (1990) Monoclonal antibody to the interferon-inducible protein Leu-13 triggers aggregation and inhibits proliferation of leukemic B cells. Blood 76:2583–2693PubMedGoogle Scholar
  4. 4.
    Evans SS, Colla RP, Leasure JA, Lee DB (1993) IFN-α induces homotypic adhesion and Leu-13 expression in human B lymphoid cells. J Immunol 150:736–747PubMedGoogle Scholar
  5. 5.
    Friedman RL, Manley SP, Mcahon M, Kerr IM, Stark GR (1984) Transcriptional and posttranscriptional regulation of interferon-induced gene expression in human cells. Cell 38:745–755PubMedCrossRefGoogle Scholar
  6. 6.
    Kelly JM, Gilbert CS, Stark GR, Kerr IM (1985) Differential regulation of interferon-induced mRNAs and c-myc mRNA by α- and β-interferons. Eur J Biochem 153:367–371PubMedCrossRefGoogle Scholar
  7. 7.
    Bradbury LE, Kansas GS, Levy S, Evans RL, Tedder TF (1992) The CD19/CD21 signal transducing complex of human B lymphocytes induces the target of antiproliferative antibody-1 and Leu-13 molecules. J Immunol 149:2841–2850PubMedGoogle Scholar
  8. 8.
    Deblandre GA, Marinx OP, Evans SS, Majjaj S, Leo O, Caput D, Huez GA, Wathelet MG (1995) Expression cloning of an interferon-inducible 17-kDa membrane protein implicated in the control of cell growth. J Biol Chem 270:23860–23866PubMedCrossRefGoogle Scholar
  9. 9.
    Zucchi I, Montagna C, Susani L, Vezzoni P, Dulbecco R (1998) The rat gene homologous to the human gene 9-27 is involved in the development of the mammary gland. Proc Natl Acad Sci USA 95:1079–1084PubMedCrossRefGoogle Scholar
  10. 10.
    Zucchi I, Montagna C, Susani L, Montesano R, Affer M, Zanotti S, Redolfi E, Vezzoni P, Dulbecco R (1999) Genetic dissection of dome formation in a mammary cell line: identification of two genes with opposing action. Proc Natl Acad Sci USA 96:13766–13770PubMedCrossRefGoogle Scholar
  11. 11.
    Zucchi I, Bini L, Valaperta R, Ginestra A, Albani D, Susani L, Sanchez JC, Liberatori S, Magi B, Raggiaschi R, Hochstrasser DF, Pallini V, Vezzoni P, Dulbecco R (2001) Proteomic dissection of dome formation in a mammary cell line: role of tropomyosin-5b and maspin. Proc Natl Acad Sci USA 98:5608–5613PubMedCrossRefGoogle Scholar
  12. 12.
    Zucchi I, Prinetti A, Scotti M, Valaperta R, Mento E, Reinbold R, Vezzoni P, Sonnino S, Albertini A, Dulbecco R (2004) Association of rat8 with Fyn protein kinase via lipid rafts is required for rat mammary cell differentiation in vitro. Proc Natl Acad Sci USA 101:1880–1885PubMedCrossRefGoogle Scholar
  13. 13.
    Saitou M, Barton SC, Surani MA (2002) A molecular programme for the specification of germ cell fate in mice. Nature 418:293–300PubMedCrossRefGoogle Scholar
  14. 14.
    Tanaka SS, Nagamatsu G, Tokitake Y, Kasa M, Tam PPL, Matsui Y (2004) Regulation of expression of mouse interferon-induced transmembrane protein like gene-3, Ifitm3 (mil-1, fragilis), in germ cells. Dev Dyn 230:651–659PubMedCrossRefGoogle Scholar
  15. 15.
    Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao Y-H, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764PubMedCrossRefGoogle Scholar
  16. 16.
    Inada M, Yasui T, Nomura S, Miyake S, Deguchi K, Himeno M, Sato M, Yamagiwa H, Kimura T, Yasui N et al (1999) Maturational disturbance of chondrocytes in Cbfa1-deficient mice. Dev Dyn 214:279–290PubMedCrossRefGoogle Scholar
  17. 17.
    Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29PubMedCrossRefGoogle Scholar
  18. 18.
    Hauschka P, Lian J, Cole D, Gundberg C (1989) Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev 69:990–1047PubMedGoogle Scholar
  19. 19.
    Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, Smith E, Bonadio J, Goldstein S, Gundberg C, Bradley A, Karsenty G (1996) Increased bone formation in osteocalcin-deficient mice. Nature 382:448–452PubMedCrossRefGoogle Scholar
  20. 20.
    Malaval L, Wade-Gueye NM, Boudiffa M, Fei J, Zirngibl R, Chen F, Laroche N, Roux J-P, Burt-Pichat B, Duboeuf F, Boivin G, Jurdic P, Lafage-Proust M-H, Amedee J, Vico L, Rossant J, Aubin J (2008) Bone sialoprotein plays a functional role in bone formation and osteoclastogenesis. J Exp Med 205:1145–1153PubMedCrossRefGoogle Scholar
  21. 21.
    Thomas G, Moffatt P, Salois P, Gaumond M-H, Gingras R, Godin E, Miao D, Goltzman D, Lancotot C (2003) Osteocrin, a novel bone-specific secreted protein that modulates the osteoblast phenotype. J Biol Chem 278:50563–50571PubMedCrossRefGoogle Scholar
  22. 22.
    Rulten SL, Kinloch RA, Tateossian H, Robinson C, Gettins L, Kay JE (2006) The human FK506-binding proteins: characterization of human FKBP11. Mamm Genome 17:322–331PubMedCrossRefGoogle Scholar
  23. 23.
    Kodama H, Amagai Y, Sudo H, Kasai S, Yamamoto S (1981) Establishment of a clonal osteogenetic cell line from newborn mouse calvaria. Jpn J Oral Biol 23:899–901Google Scholar
  24. 24.
    Sudo H, Kodama HA, Amagi Y, Yamamoto S, Kasai S (1983) In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol 96:191–198PubMedCrossRefGoogle Scholar
  25. 25.
    Galat A (2003) Peptidyl prolyl cis/trans isomerases (immunophilins): biological diversity-targets-functions. Curr Top Med Chem 3:1315–1347PubMedCrossRefGoogle Scholar
  26. 26.
    Moffatt P, Gaumond M-H, Salois P, Sellin K, Bessette M-C, Godin E, de Oliveira PT, Atkins GJ, Nanci A, Thomas G (2008) Bril, a novel bone-specific modulator of mineralization. J Bone Miner Res 23:1497–1508PubMedCrossRefGoogle Scholar
  27. 27.
    Midura RJ, Wang A, Lovitch D, Law D, Powell K, Gorski JP (2004) Bone acidic glycoprotein-75 delineates the extracellular sites of future bone sialoprotein accumulation and apatite nucleation in osteoblastic cultures. J Biol Chem 279:25464–25473PubMedCrossRefGoogle Scholar
  28. 28.
    Gorski JP, Wang A, Lovitch D, Law D, Powell K, Midura RJ (2004) Extracellular bone acidic glycoprotein-75 defines condensed mesenchyme regions to be mineralized and localizes with bone sialoprotein during intramembranous bone formation. J Biol Chem 279:25455–25463PubMedCrossRefGoogle Scholar
  29. 29.
    Caplan AI, Pechak DG (1987) The cellular and molecular embryology of bone formation. In: Peck WA (ed) Bone and mineral research, vol 5. Elsevier, New York, pp 117–183Google Scholar
  30. 30.
    Kay JE (1996) Structure–function relationships in the FK506-binding protein (FKBP) family of peptidylprolyl cis–trans isomerases. Biochem J 314:361–385PubMedGoogle Scholar
  31. 31.
    Galat A (1993) Peptidylproline cis–trans-isomerases: immunophilins. Eur J Biochem 216:689–707PubMedCrossRefGoogle Scholar
  32. 32.
    Winslow MM, Pan MG, Starbuck M, Gallo EM, Deng L, Karsenty G, Crabtree GR (2006) Calcineurin/NFAT signaling in osteoblasts regulates bone mass. Dev Cell 10:771–782PubMedCrossRefGoogle Scholar
  33. 33.
    Koga T, Matsui Y, Asagiri M, Kodama T, de Crombrugghe B, Nakashima K, Takayama H (2005) NFAT and Osterix cooperatively regulate bone formation. Nat Med 11:880–885PubMedCrossRefGoogle Scholar
  34. 34.
    Tanaka SS, Yamaguchi YL, Tsoi B, Lickert H, Tam PP (2005) IFITM/Mil/fragilis family proteins IFITM and IFITM3 play distinct roles in mouse primordial germ cell homing and repulsion. Dev Cell 9:723–724CrossRefGoogle Scholar
  35. 35.
    Rubinstein E, Ziyyat A, Prenant M, Wrobel E, Wolf J-P, Levy S, Le Nauour F, Boucheix C (2006) Reduced fertility of female mice lacking CD81. Dev Biol 290:351–358PubMedCrossRefGoogle Scholar
  36. 36.
    Brass AL, Huang I-C, Benita Y, John SP, Krishnan MN et al (2009) The IFITM5 proteins mediate cellular resistance to influenza A H1N1 virus, West nile virus, and dengue virus. Cell 139:1243–1254PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer 2010

Authors and Affiliations

  • Nobutaka Hanagata
    • 1
    • 2
  • Xianglan Li
    • 1
  • Hiromi Morita
    • 1
  • Taro Takemura
    • 1
  • Jie Li
    • 1
  • Takashi Minowa
    • 1
  1. 1.Nanotechnology Innovation CenterNational Institute for Materials ScienceIbarakiJapan
  2. 2.Graduate School of Life ScienceHokkaido UniversitySapporoJapan

Personalised recommendations