Journal of Bone and Mineral Metabolism

, Volume 28, Issue 6, pp 682–689 | Cite as

Densitometric and geometric measurement of the proximal femur in elderly women with and without osteoporotic vertebral fractures by volumetric quantitative multi-slice CT

Original Article


There is a lack of research on volumetric multi-slice CT (MSCT) application in hip densitometric assessment and geometric measures in elderly women with osteoporotic vertebral fractures. A total of 237 elderly women were divided into three groups based on BMD values of the lumbar spine (AP-SPINE) and/or the femoral neck (NECK) by dual energy X-ray absorptiometry (DXA): osteoporosis with (OP_FX, 53 cases) or without vertebral fracture (OP_NONFX, 94 cases), or normal BMD (CONTROL, 90 cases). Volumetric BMD of trabecular bone (TRAB), integral bone (INTGL) and cortical bone (CORT) with neck axis length (NAL) and minimum cross-section area (mCSA) measures of the left femoral neck were calculated, respectively, by using OsteoCAD software based on MSCT scans of the abdominal-pelvic region of all participants, then the index of femoral neck strength (FNSI) was estimated. The values of TRAB, CORT and INTGL of OP_FX were significantly lower than those of OP_NONFX, with the decrease in 6.8–21.8%, as well as being lower than those in CONTROL, whereas no significant differences in the values of AP-SPINE and NECK were found between OP_FX and OP_NONFX. No significant difference of the value of mCSA was found among these three groups. The NAL value of OP_NONFX was larger than that of CONTROL. FNSI of femoral neck in OP_FX (0.42 ± 0.15 g2/cm4) was significantly lower than OP_NONFX (0.50 ± 0.14 g2/cm4) (p < 0.05). vQCT measurement seemed to be more effective than DXA in evaluating hip densitometric changes and discriminating osteoporotic elderly subjects with fractured vertebrae from the non-fractured in a group of Chinese women.


Osteoporosis Bone mineral density (BMD) Volumetric QCT Hip fracture Elderly women 


  1. 1.
    Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767CrossRefPubMedGoogle Scholar
  2. 2.
    Wu XP, Liao EY, Luo XH, Zhang H, Dai RC, Huang G (2003) Establishment and evaluation of bone mineral density reference databases appropriate for diagnosis and evaluation of osteoporosis in mainland Chinese women and the diagnosis of osteoporosis. J Bone Miner Metab 21:184–192CrossRefPubMedGoogle Scholar
  3. 3.
    Genant HK, Engelke K, Fuerst T, Glüer CC, Grampp S, Harris ST, Jergas M, Lang T, Lu Y, Majumdar S, Mathur A, Takada M (1996) Noninvasive assessment of bone mineral and structure: state of the art. J Bone Miner Res 11:707–730CrossRefPubMedGoogle Scholar
  4. 4.
    Lian KC, Lang TF, Keyak JH, Modin GW, Rehman Q, Do L, Lane NE (2005) Differences in hip quantitative computed tomography (QCT) measurements of bone mineral density and bone strength between glucocorticoid-treated and glucocorticoid-naïve postmenopausal women. Osteoporosis Int 16:642–650CrossRefGoogle Scholar
  5. 5.
    Huber MB, Carballido-Gamio J, Bauer JS, Baum T, Eckstein F, Lochmüller EM, Majumdar S, Link TM (2008) Proximal femur specimens: automated 3D trabecular bone mineral density analysis at multidetector CT—correlation with biomechanical strength measurement. Radiology 247:472–481PubMedGoogle Scholar
  6. 6.
    Lang TF, Keyak JH, Heitz MW, Augat P, Lu Y, Mathur A, Genant HK (1997) Volumetric quantitative computed tomography of the proximal femur: precision and relation to bone strength. Bone 21:101–108CrossRefPubMedGoogle Scholar
  7. 7.
    Bousson V, Le Bras A, Roqueplan F, Kang Y, Mitton D, Kolta S, Bergot C, Skalli W, Vicaut E, Kalender W, Engelke K, Laredo JD (2006) Volumetric quantitative computed tomography of the proximal femur: relationships linking geometric and densitometric variables to bone strength. Role for compact bone. Osteoporos Int 17:855–864CrossRefPubMedGoogle Scholar
  8. 8.
    Lang TF, Guglielmi G, van Kuijk C, De Serio A, Cammisa M, Genant HK (2002) Measurement of bone mineral density at the spine and proximal femur by volumetric quantitative computed tomography and dual-energy X-ray absorptiometry in elderly women with and without vertebral fractures. Bone 30:247–250CrossRefPubMedGoogle Scholar
  9. 9.
    Black DM, Bouxsein ML, Marshall LM, Cummings SR, Lang TF, Cauley JA, Ensrud KE, Nielson CM, Orwoll ES, for the Osteoporotic Fractures in Men (MrOS) Research Group. (2008) Proximal femoral structure and the prediction of hip fracture in men: a large prospective study using QCT. J Bone Miner Res 23:1326–1333CrossRefPubMedGoogle Scholar
  10. 10.
    Kanis JA, Melton L III, Christiansen C, Johnston CC, Khaltaev N (1994) The diagnosis of osteoporosis. J Bone Miner Res 9:1137–1141CrossRefPubMedGoogle Scholar
  11. 11.
    Bauer JS, Müller D, Ambekar A, Dobritz M, Matsuura M, Eckstein F, Rummeny EJ, Link TM (2006) Detection of osteoporotic vertebral fractures using multidetector CT. Osteoporos Int 17:608–615CrossRefPubMedGoogle Scholar
  12. 12.
    Davis JW, Grove JS, Wasnich RD, Ross PD (1999) Spatial relationships between prevalent and incident spine fractures. Bone 24:261–264CrossRefPubMedGoogle Scholar
  13. 13.
    Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semi-quantitative technique. J Bone Miner Res 8:1137–1148CrossRefPubMedGoogle Scholar
  14. 14.
    Kang Y, Engelke J, Fuchs S, Kalender WA (2005) An anatomic coordinate system of the femoral neck for highly reproducible BMD measurements using 3D QCT. Comput Med Imaging Graph 29:533–541CrossRefPubMedGoogle Scholar
  15. 15.
    Wu S, Cai Y, Kang Y, Lan J, Wang L, Yu J, Li J (2007) Volumetric BMD measurement of femoral neck in postmenopausal osteoporotic women: a quantitative MSCT study [abstr]. In: Radiological Society of North America Scientific Assembly and Annual Meeting Program. Oak Brook, Ill: Radiological Society of North America, pp 303Google Scholar
  16. 16.
    Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A (2004) Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res 19:1006–1012CrossRefPubMedGoogle Scholar
  17. 17.
    Sievanen H (2000) A physical model for dual-energy X-ray absorptiometry derived bone mineral density. Invest Radiol 35:325–330CrossRefPubMedGoogle Scholar
  18. 18.
    Lafferty FW, Rowland DY (1996) Correlations of dual-energy X-ray absorptiometry, quantitative computed tomography, and single photon absorptiometry with spinal and non-spinal fractures. Osteoporos Int 6:407–415CrossRefPubMedGoogle Scholar
  19. 19.
    Ito M, Lang TF, Jergas M, Ohki M, Takada M, Nakamura T, Hayashi K, Genant HK (1997) Spinal trabecular bone loss and fracture in American and Japanese women. Calcif Tissue Int 61:123–128CrossRefPubMedGoogle Scholar
  20. 20.
    Lang TF, Li J, Harris ST, Genant HK (1999) Assessment of vertebral bone mineral density using volumetric quantitative CT. J Comput Assist Tomogr 23:130–137CrossRefPubMedGoogle Scholar
  21. 21.
    Kang Y, Engelke K, Kalender WA (2004) Interactive 3D editing tools for image segmentation. Med Image Anal 8:35–46CrossRefPubMedGoogle Scholar
  22. 22.
    Black DM, Ardenn K, Palermo L, Person J, Cummings SR (1999) Prevalent vertebral deformities predict hip fractures and new vertebral deformities but not wrist fractures. J Bone Miner Res 14:821–828CrossRefPubMedGoogle Scholar
  23. 23.
    Cheng X, Li J, Lu Y, Keyak J, Lang T (2007) Proximal femoral density and geometry measurements by quantitative computed tomography: association with hip fracture. Bone 40:169–174CrossRefPubMedGoogle Scholar
  24. 24.
    Duboeuf F, Hans D, Schott AM, Kotzki PO, Favier F, Marcelli C, Meunier PJ, Delmas PD (1997) Different morphometric and densitometric parameters predict cervical and trochanteric hip fracture: the EPIDOS study. J Bone Miner Res 12:1895–1902CrossRefPubMedGoogle Scholar
  25. 25.
    Bergot C, Bousson V, Meunier A, Laval-Jeantet M, Laredo J-D (2002) Hip fracture risk and proximal femur geometry from DXA scans. Osteoporos Int 13:542–550CrossRefPubMedGoogle Scholar
  26. 26.
    Ahlborg HG, Nguyen ND, Nguyen TV, Center JR, Eisman JA (2005) Contribution of hip strength indices to hip fracture risk in elderly men and women. J Bone Miner Res 20:1820–1827CrossRefPubMedGoogle Scholar
  27. 27.
    Rivadeneira F, Zillikens MC, De Laet CE, Hofman A, Uitterlinden AG, Beck TJ, Pols HA (2007) Femoral neck BMD is a strong predictor of hip fracture susceptibility in elderly men and women because it detects cortical bone instability: the Rotterdam Study. J Bone Miner Res 22:1781–1790CrossRefPubMedGoogle Scholar
  28. 28.
    Cody DD, Divine GW, Nahigian K, Kleerekoper M (2000) Bone density distribution and gender dominate femoral neck fracture risk predictors. Skeletal Radiol 29:151–161CrossRefPubMedGoogle Scholar
  29. 29.
    Kaptoge S, Beck TJ, Reeve J, Stone KL, Hillier TA, Cauley JA, Cummings SR (2008) Prediction of incident hip fracture risk by femur geometry variables measured by hip structural analysis in the study of osteoporotic fractures. J Bone Miner Res 23:1892–1904CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer 2010

Authors and Affiliations

  1. 1.Medical Image Institute of TianjinTianjinPeople’s Republic of China
  2. 2.Department of RadiologyFirst Central Hospital of Tianjin Medical UniversityTianjinPeople’s Republic of China
  3. 3.Department of Health Research and PolicyStanford UniversityStanfordUSA
  4. 4.Department of RadiologyTianjin Medical UniversityTianjinPeople’s Republic of China
  5. 5.Department of RadiologyNorthwestern UniversityChicagoUSA

Personalised recommendations