Skip to main content

Advertisement

Log in

Beneficial effects of vitamin E isomer supplementation on static and dynamic bone histomorphometry parameters in normal male rats

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Bone is a specialized connective tissue that functions as the load-bearing structure of the body. Free radicals may affect bone remodeling by regulating osteoclast activity in either the physiological or pathological condition. Vitamin E, a lipid-soluble antioxidant, has been demonstrated to offer protection against osteoporosis and to improve the bone material and structure of animal models. The aim of this study was to observe and compare the effects of alpha-tocopherol (α-tocopherol), delta-tocotrienol (δ-tocotrienol), and gamma-tocotrienol (γ-tocotrienol) on the static and dynamic bone histomorphometric parameters in normal male rats. Thirty-two normal Sprague–Dawley male rats aged 3 months and weighing 200–250 g were randomly divided into four groups. The control group was supplemented with oral gavages of olive oil (vehicle), whereas the α-tocopherol, δ-tocotrienol, and γ-tocotrienol groups were given oral gavages of 60 mg/kg α-tocopherol, δ-tocotrienol, and γ-tocotrienol, respectively. The rats were injected twice with calcein to fluorochrome-label the bones. After 4 months of treatment, the rats were killed, and the left femurs were dissected out and prepared for bone histomorphometry. Both the static and dynamic parameters of the vitamin E-treated groups were better than those of the normal control group. Among the vitamin E-treated groups, the tocotrienol groups showed better histomorphometry results compared to the α-tocopherol group, with the γ-tocotrienol group demonstrating the best effects on both sets of parameters. We concluded that vitamin E can promote bone formation in normal rats, with γ-tocotrienol being the most potent form of vitamin E.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meuner PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols and units. J Bone Miner Res 6:595–610

    Google Scholar 

  2. Compston JE, Crouchier PI (1991) Histomorphometric analysis of trabecular bone remodeling in osteoporosis. Bone Miner 14:91–102

    Article  CAS  PubMed  Google Scholar 

  3. Ima-Nirwana S, Kiftiah A, Sariza T, Gapor MT, Khalid BAK (1999) Palm vitamin E improves bone metabolism and survival rate in thyrotoxic rats. Gen Pharmacol 32:621–626

    Article  CAS  PubMed  Google Scholar 

  4. Ahmad NS, Khalid BAK, Luke DA, Ima Nirwana S (2005) Tocotrienol offers better protection than tocopherol from free radical-induced damage of rat bone. Clin Exp Pharmacol Physiol 32:661–770

    Article  Google Scholar 

  5. Hapidin H, Othman F, Soelaiman IN, Shuid AN, Mohamed N (2009) Beneficial effects of tocotrienol and tocopherol on bone histomorphometric parameters in Sprague–Dawley male rats after nicotine cessation. Calcif Tissue Int 84:65–74

    Article  Google Scholar 

  6. Freere RH, Weibel ER (1967) Stereologic techniques in microscopy. J R Microsc Soc 87:25–34

    Google Scholar 

  7. Baldock AJ, Ha Morris, Need AG (1998) Variation in short term changes in bone cell activity in the three regions of the distal femur immediately following ovariectomy. J Bone Miner Res 13:1451–1457

    Article  CAS  PubMed  Google Scholar 

  8. Ima-Nirwana S, Suhaniza S (2004) Effects of tocopherols and tocotrienols on body composition and bone calcium content in adrenalectomized rats replaced with dexamethasone. J Med Food 7:45–51

    Article  CAS  PubMed  Google Scholar 

  9. Norazlina M, Lee PL, Lukman HI, Nazrun AS, Ima-Nirwana S (2007) Effects of vitamin E supplementation on bone metabolism in nicotine-treated rats. Singap Med J 48:195–199

    CAS  Google Scholar 

  10. Frost HM, Jee WS (1992) On the rat model human of osteopenias and osteoporosis. Bone Miner 18:227–236

    Article  CAS  PubMed  Google Scholar 

  11. Sandra M, Norazlina M, Nazrun AS, Ima Nirwana S (2008) Palm tocotrienol exerted better antioxidant activities in bone than alpha-tocopherol. Basic Clin Pharmacol 103:55–60

    Article  Google Scholar 

  12. Xu H, Watkins BA, Seifert MF (1995) Vitamin E stimulates trabecular bone formation and alters epiphyseal cartilage morphology. Calcif Tissue Int 57:293–300

    Article  CAS  PubMed  Google Scholar 

  13. Ebina Y, Okada S, Hamazaki S, Toda Y, Midorikawa O (1991) Impairment of bone formation with aluminum and ferric nitrilotriacetate complexes. Calcif Tissue Int 48:28–36

    Article  CAS  PubMed  Google Scholar 

  14. Abhaya A, Khatri K, Pradhan S, Prakash R (2003) Effect of alpha-tocopherol on the growth plate of albino rats. J Anat Soc India 52:58–63

    Google Scholar 

  15. Ahmad NS, Khalid AK, Ima NS (2004) Effects of vitamin E on interleukin-1 in ferric nitrilotriacetate treated rats. Malays J Biochem Biol 9:43–47

    Google Scholar 

  16. Norazlina M, Ng FW, Ima-Nirwana S (2005) Gamma-tocotrienol is required for normal vitamin D metabolism in female rats. Indian J Pharmacol 37:309–314

    Article  CAS  Google Scholar 

  17. Norazlina M, Ima-Nirwana S, Gapor MT, Khalid BAK (2000) Palm vitamin E is comparable to alpha-tocopherol in maintaining bone mineral density in ovariectomised female rats. Exp Clin Endocrinol Diabetes 108:305–310

    Article  CAS  PubMed  Google Scholar 

  18. Fort FL (1991) Drug safety evaluation. In: Swarbrick J, Boylan JC (eds) Encyclopedia of pharmaceutical technology, vol 4. Dekker, New York, pp 416–421

    Google Scholar 

  19. Meydani SN, Meydani M, Rall LC, Morrow F, Blumberg JB (1994) Assessment of the safety of high-dose, short-term supplementation with vitamin E in healthy older adults. Am J Clin Nutr 60:704–709

    CAS  PubMed  Google Scholar 

  20. Vignery A, Baron R (1990) Dynamic histomorphometry of alveolar bone remodeling in the adult rat. Anat Rec 196:191–200

    Article  Google Scholar 

  21. Turner CH, Owan I, Brizendine EJ, Zhang W, Wilson ME, Dunipace AJ (1996) High fluoride intake causes osteomalacia and diminished bone strength in rats with renal deficiency. Bone (NY) 19:595–601

    CAS  Google Scholar 

  22. Wood AE, Ellis RC (2000) Laboratory histopathology: a complete reference. Churchill Livingstone, Edinburgh

    Google Scholar 

  23. Turan B, Balcik C, Akkas N (1997) Effects of dietary selenium and vitamin E on the biomechanical properties of rabbit bones. Clin Exp Rheumatol 16:441–449

    Article  CAS  Google Scholar 

  24. Delanian S, Lefaix JL (2002) Complete healing of severe osteoradionecrosis with treatment combining pentoxyfylline, tocopherol and clodronate. Br J Radiol 75:467–469

    CAS  PubMed  Google Scholar 

  25. Pacifici R, Carano A, Santoro SA, Rifas L, Jeffrey JJ, Malone JD, McCracken R, Avioli LV (1991) Bone matrix constituents stimulate interleukin-1 release from human blood mononuclear cells. Clin Invest 87:221–228

    Article  CAS  Google Scholar 

  26. Bismar H, Diel I, Ziegler R, Pfeilschifter J (1995) Increased cytokine secretion by human bone marrow cells after menopause or discontinuation of estrogen replacement. Clin Endocrinol Metab 80:3351–3355

    Article  CAS  Google Scholar 

  27. Horowitz M, Wishart JM, Need AG, Morris HA, Nordin BE (1993) Effects of norethisterone on bone related biochemical variables and forearm bone mineral in post-menopausal osteoporosis. Clin Endocrinol 39:649–655

    Article  CAS  Google Scholar 

  28. Ima-Nirwana S, Norazlina M, Khalid BAK (2000) Palm vitamin E prevents osteoporosis in orchidectomized growing male rats. Nat Prod Sci 694:155–160

    Google Scholar 

  29. Arjmandi BH, Akhter MP, Chakkalakal D, Khalil DA, Lucas EA, Juma S, El-Osta M, Devareddy L, Stoecker BJ (2001) Effects of isoflavones, vitamin E, and their combination on bone in an aged rat model of osteopenia. J Bone Miner Res 16:S533

    Google Scholar 

  30. Arjmandi BH, Juma S, Beharka A, Bapna S, Akhter M, Meydani SN (2002) Vitamin E improves bone quality in the aged but not in young adult male mice. J Nutr Biochem 13:543–549

    Article  CAS  PubMed  Google Scholar 

  31. Ima-Nirwana S, Kiftiah A, Zainal AG, Norazlina M, Gapor NT, Khalid BAK (1998) Influence of palm oil and palm vitamin E on bone mineral density in orchidectomised male rats. Toxicol Lett 95:214

    Article  Google Scholar 

  32. Burton GW, Ingold KU (1989) Vitamin E as an in vitro and in vivo antioxidant. Ann N Y Acad Sci 570:7–22

    Article  CAS  PubMed  Google Scholar 

  33. Niki E, Kawakami A, Saito M, Yamamoto Y, Tsuchiya J, Kamiya Y (1985) Effect of phytyl side chain of vitamin E on its antioxidant activity. J Biol Chem 260:2191–2196

    CAS  PubMed  Google Scholar 

  34. Suarna C, Hood RL, Dean RT, Stocker R (1993) Comparative antioxidant activity of tocotrienols and other natural lipid-soluble antioxidants in a homogeneous system, and in rat and human lipoproteins. Biochim Biophys Acta 1166:163–170

    CAS  PubMed  Google Scholar 

  35. Serbinova E, Kagan V, Han D, Packer L (1995) Free radical recycling and intramembrane mobility in the antioxidant properties of alpha-tocopherol and alpha-tocotrienol. Free Radic Biol Med 1991:263–275

    Google Scholar 

  36. Kamat JP, Devasegayam TP (1995) Tocotrienols from palm oil as potent inhibitors of lipid peroxidation and protein oxidation in rat brain mitochondria. Neurosci Lett 195:179–182

    Article  CAS  PubMed  Google Scholar 

  37. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang O, Mitlak BH (2001) Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 10:1434–1441

    Article  Google Scholar 

  38. Jiang Y, Zhao JJ, Mitlak BH, Wang O, Genant HK, Eriksen EF (2003) Recombinant human parathyroid hormone (1–34) [teriparatide] improves both cortical and cancellous bone structure. J Bone Miner Res 18:1932–1941

    Article  CAS  PubMed  Google Scholar 

  39. Greenspan SL, Bone HG, Ettinger DA, Lindsay R, Zanchetta JR, Blosch CM, Mathisen AL, Morris SA, Marriott TB (2007) Effects of recombinant human parathyroid hormone (1–84) on vertebral fracture and bone mineral density in postmenopausal women with osteoporosis. Ann Intern Med 146:326–339

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Carotech (Ipoh, Malaysia) for supplying the tocotrienol isomers. We are also grateful to the staff of the Pharmacology Department, UKM Medical Centre, for their technical assistance. We also thank the Universiti Kebangsaan Malaysia for funding this project via research grant UKMAEC: Far/2006/nazrun/19-4/169-1-2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Nazrun Shuid.

About this article

Cite this article

Mehat, M.Z., Shuid, A.N., Mohamed, N. et al. Beneficial effects of vitamin E isomer supplementation on static and dynamic bone histomorphometry parameters in normal male rats. J Bone Miner Metab 28, 503–509 (2010). https://doi.org/10.1007/s00774-010-0159-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-010-0159-2

Keywords

Navigation