Skip to main content

Advertisement

Log in

Passage-affected competitive regulation of osteoprotegerin synthesis and the receptor activator of nuclear factor-κB ligand mRNA expression in normal human osteoblasts stimulated by the application of cyclic tensile strain

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Mechanical stress application is a unique method for bone studies. We have reported regulation via the p38 mitogen-activated protein kinase (MAPK) pathway in osteoblasts under application of cyclic tensile strain (CTS), among many reports on the extracellular signal-regulated kinase (ERK) 1/2 pathway during mechanical stress, and questions remain as to the differences between our findings and those of others regarding types of MAPK activation. In the present study, osteoblasts were used after the third passage and stimulated by the application of 7%, 0.25 Hz CTS for 3 days, 4 h/day. CTS-induced osteoprotegerin (OPG) synthesis in osteoblasts increased at the third passage and decreased at the fifth passage, whereas CTS-induced receptor activator of nuclear factor-κB ligand (RANKL) mRNA expression decreased in osteoblasts at the third passage and increased at the fifth passage. Increases in CTS-induced osteopontin (OPN) synthesis, cyclooxygenase-2 (Cox-2) mRNA expression, and nitric oxide (NO) production by osteoblasts did not change at the third and fifth passages. Furthermore, p38 MAPK at the third passage and ERK1/2 at the fifth passage were found to be competitively activated in osteoblasts by the application of CTS. Based on these results, osteoblasts were shown to be affected by the number of passages. It was suggested that the examination of passage-affected characteristics of osteoblasts might not only be pertinent to the analysis of cellular senescence and in vivo models of bone remodelling with aging but could also be useful in the development of bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Skerry TM (1999) Identification of novel signalling pathways during functional adaptation of the skeleton to mechanical loading: the role of glutamate as a paracrine signalling agent in the skeleton. J Bone Miner Metab 17:66–70

    Article  CAS  PubMed  Google Scholar 

  2. Mikuni-Takagaki Y (1999) Mechanical responses and signal transduction pathways in stretched osteocytes. J Bone Miner Metab 17:57–60

    Article  CAS  PubMed  Google Scholar 

  3. Huiskes R, Ruimerman R, van Lenthe GH, Janssen JD (2000) Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature (Lond) 405:704–706

    Article  CAS  Google Scholar 

  4. Azuma Y, Ito M, Harada Y, Takagi H, Ohta T, Jingushi S (2001) Low-intensity pulsed ultrasound accelerates rat femoral fracture healing by acting on the various cellular reactions in the fracture callus. J Bone Miner Res 16:671–680

    Article  CAS  PubMed  Google Scholar 

  5. Vico L, Hinsenkamp M, Jones D, Marie PJ, Zallone A, Cancedda R (2001) Osteobiology, strain, and microgravity. Part II: studies at the tissue level. Calcif Tissue Int 68:1–10

    Article  CAS  PubMed  Google Scholar 

  6. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  Google Scholar 

  7. Cristofalo VJ, Lorenzini A, Allen RG, Torres C, Tresini M (2004) Replicative senescence: a critical review. Mech Ageing Dev 125:827–848

    Article  CAS  PubMed  Google Scholar 

  8. Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature (Lond) 345:458–460

    Article  CAS  Google Scholar 

  9. Cristofalo VJ, Allen RG, Pignolo RJ, Martin BG, Beck JC (1998) Relationship between donor age and the replicative lifespan of human cells in culture: a reevaluation. Proc Natl Acad Sci USA 95:10614–10619

    Article  CAS  PubMed  Google Scholar 

  10. Kamino H, Hiratsuka M, Toda T, Nishigaki R, Osaki M, Ito H, Inoue T, Oshimura M (2003) Searching for genes involved in arteriosclerosis: proteomic analysis of cultured human umbilical vein endothelial cells undergoing replicative senescence. Cell Struct Funct 28:495–503

    Article  CAS  PubMed  Google Scholar 

  11. Shi Q, Aida K, Vandeberg JL, Wang XL (2004) Passage-dependent changes in baboon endothelial cells: relevance to in vitro aging. DNA Cell Biol 23:502–509

    Article  CAS  PubMed  Google Scholar 

  12. Kusumi A, Sakaki H, Kusumi T, Oda M, Narita K, Nakagawa H, Kubota K, Kimura H (2005) Regulation of synthesis of osteoprotegerin and soluble receptor activator of nuclear factor-κB ligand in normal human osteoblasts via the p38 mitogen-activated protein kinase pathway by the application of cyclic tensile strain. J Bone Miner Metab 23:373–381

    Article  CAS  PubMed  Google Scholar 

  13. Boutahar N, Guignandon A, Vico L, Lafage-Proust MH (2004) Mechanical strain on osteoblasts activates autophosphorylation of focal adhesion kinase and proline-rich tyrosine kinase 2 tyrosine sites involved in ERK activation. J Biol Chem 279:30588–30599

    Article  CAS  PubMed  Google Scholar 

  14. Tang L, Lin Z, Li YM (2006) Effects of different magnitudes of mechanical strain on osteoblasts in vitro. Biochem Biophys Res Commun 344:122–128

    Article  CAS  PubMed  Google Scholar 

  15. Saunders MM, Taylor AF, Du C, Zhou Z, Pellegrini VD Jr, Donahue HJ (2006) Mechanical stimulation effects on functional end effectors in osteoblastic MG-63 cells. J Biomech 39:1419–1427

    Article  CAS  PubMed  Google Scholar 

  16. Khosla S (2001) Minireview: the OPG/RANKL/RANK system. Endocrinology 142:5050–5055

    Article  CAS  PubMed  Google Scholar 

  17. Hofbauer LC, Heufelder AE (2001) Role of receptor activator of nuclear factor-κB ligand and osteoprotegerin in bone cell biology. J Mol Med 79:243–253

    Article  CAS  PubMed  Google Scholar 

  18. Morinobu M, Ishijima M, Rittling SR, Tsuji K, Yamamoto H, Nifuji A, Denhardt DT, Noda M (2003) Osteopontin expression in osteoblasts and osteocytes during bone formation under mechanical stress in the calvarial suture in vivo. J Bone Miner Res 18:1706–1715

    Article  CAS  PubMed  Google Scholar 

  19. Watanuki M, Sakai A, Sakata T, Tsurukami H, Miwa M, Uchida Y, Watanabe K, Ikeda K, Nakamura T (2002) Role of inducible nitric oxide synthase in skeletal adaptation to acute increases in mechanical loading. J Bone Miner Res 17:1015–1025

    Article  CAS  PubMed  Google Scholar 

  20. Nakai K, Tanaka S, Sakai A, Nagashima M, Tanaka M, Otomo H, Nakamura T (2006) Cyclooxygenase-2 selective inhibition suppresses restoration of tibial trabecular bone formation in association with restriction of osteoblast maturation in skeletal reloading after hindlimb elevation of mice. Bone (NY) 39:83–92

    CAS  Google Scholar 

  21. Yang CM, Chien CS, Yao CC, Hsiao LD, Huang YC, Wu CB (2004) Mechanical strain induces collagenase-3 (MMP-13) expression in MC3T3-E1 osteoblastic cells. J Biol Chem 279:22158–22165

    Article  CAS  PubMed  Google Scholar 

  22. Liu J, Liu T, Zheng Y, Zhao Z, Liu Y, Cheng H, Luo S, Chen Y (2006) Early responses of osteoblast-like cells to different mechanical signals through various signalling pathways. Biochem Biophys Res Commun 348:1167–1173

    Article  CAS  PubMed  Google Scholar 

  23. Kusumi A, Sakaki H, Fukui R, Satoh H, Kusumi T, Kimura H (2004) High IL-6 synthesis in cultured fibroblasts isolated from radicular cysts. Arch Oral Biol 49:643–652

    Article  CAS  PubMed  Google Scholar 

  24. Kusumi T, Ishibashi Y, Tsuda E, Kusumi A, Tanaka M, Sato F, Toh S, Kijima H (2006) Osteochondritis dissecans of the elbow: histopathologic assessment of the articular cartilage and subchondral bone with special emphasis on their damage and repair. Pathol Int 56:604–612

    Article  PubMed  Google Scholar 

  25. Xu Z, Buckley MJ, Evans CH, Agarwal S (2000) Cyclic tensile strain acts as an antagonist of IL-1β actions in chondrocytes. J Immunol 165:453–460

    CAS  PubMed  Google Scholar 

  26. Bièche I, Laurendeau I, Tozlu S, Olivi M, Vidaud D, Lidereau R, Vidaud M (1999) Quantitation of MYC gene expression in sporadic breast tumors with a real-time reverse transcription-PCR assay. Cancer Res 59:2759–2765

    PubMed  Google Scholar 

  27. Chretien S, Dubart A, Beaupain D, Raich N, Grandchamp B, Rosa J, Goossens M, Romeo P-H (1988) Alternative transcription and splicing of the human porphobilinogen deaminase gene result either in tissue-specific or in housekeeping expression. Proc Natl Acad Sci USA 85:6–10

    Article  CAS  PubMed  Google Scholar 

  28. Shimizu N, Goseki T, Yamaguchi M, Iwasawa T, Takiguchi H, Abiko Y (1997) In vitro cellular aging stimulates interleukin-1β production in stretched human periodontal-ligament-derived cells. J Dent Res 76:1367–1375

    Article  CAS  PubMed  Google Scholar 

  29. Abiko Y, Shimizu N, Yamaguchi M, Suzuki H, Takiguchi H (1998) Effect of aging on functional changes of periodontal tissue cells. Ann Periodontol 3:350–356

    CAS  PubMed  Google Scholar 

  30. Terpos E, Szydlo R, Apperley JF, Hatjiharissi E, Politou M, Meletis J, Viniou N, Yataganas X, Goldman JM, Rahemtulla A (2003) Soluble receptor activator of nuclear factor κB ligand-osteoprotegerin ratio predicts survival in multiple myeloma: proposal for a novel prognostic index. Blood 102:1064–1069

    Article  CAS  PubMed  Google Scholar 

  31. Pan B, Farrugia AN, To LB, Findlay DM, Green J, Lynch K, Zannettino AC (2004) The nitrogen-containing bisphosphonate, zoledronic acid, influences RANKL expression in human osteoblast-like cells by activating TNF-α converting enzyme (TACE). J Bone Miner Res 19:147–154

    Article  CAS  PubMed  Google Scholar 

  32. Kanno T, Takahashi T, Tsujisawa T, Ariyoshi W, Nishihara T (2007) Mechanical stress-mediated Runx2 activation is dependent on Ras/ERK1/2 MAPK signalling in osteoblasts. J Cell Biochem 101:1266–1277

    Article  CAS  PubMed  Google Scholar 

  33. Andresen BT, Rizzo MA, Shome K, Romero G (2002) The role of phosphatidic acid in the regulation of the Ras/MEK/Erk signalling cascade. FEBS Lett 531:65–68

    Article  CAS  PubMed  Google Scholar 

  34. Hütter E, Unterluggauer H, Überall F, Schramek H, Jansen-Dürr P (2002) Replicative senescence of human fibroblasts: the role of Ras-dependent signalling and oxidative stress. Exp Gerontol 37:1165–1174

    Article  PubMed  Google Scholar 

  35. Carlson ME, Silva HS, Conboy IM (2008) Aging of signal transduction pathways, and pathology. Exp Cell Res 314:1951–1961

    Article  CAS  PubMed  Google Scholar 

  36. Iwasa H, Han J, Ishikawa F (2003) Mitogen-activated protein kinase p38 defines the common senescence-signalling pathway. Genes Cells 8:131–144

    Article  CAS  PubMed  Google Scholar 

  37. Shakibaei M, Seifarth C, John T, Rahmanzadeh M, Mobasheri A (2006) Igf-I extends the chondrogenic potential of human articular chondrocytes in vitro: molecular association between Sox9 and Erk1/2. Biochem Pharmacol 72:1382–1395

    Article  CAS  PubMed  Google Scholar 

  38. Cao J, Venton L, Sakata T, Halloran BP (2003) Expression of RANKL and OPG correlates with age-related bone loss in male C57BL/6 mice. J Bone Miner Res 18:270–277

    Article  CAS  PubMed  Google Scholar 

  39. Cao JJ, Wronski TJ, Iwaniec U, Phleger L, Kurimoto P, Boudignon B, Halloran BP (2005) Aging increases stromal/osteoblastic cell-induced osteoclastogenesis and alters the osteoclast precursor pool in the mouse. J Bone Miner Res 20:1659–1668

    Article  CAS  PubMed  Google Scholar 

  40. Sugiura F, Kitoh H, Ishiguro N (2004) Osteogenic potential of rat mesenchymal stem cells after several passages. Biochem Biophys Res Commun 316:233–239

    Article  CAS  PubMed  Google Scholar 

  41. Mauney JR, Jaquiery C, Volloch V, Heberer M, Martin I, Kaplan DL (2005) In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering. Biomaterials 26:3173–3185

    Article  CAS  PubMed  Google Scholar 

  42. O’Driscoll L, Gammell P, McKiernan E, Ryan E, Jeppesen PB, Rani S, Clynes M (2006) Phenotypic and global gene expression profile changes between low passage and high passage MIN-6 cells. J Endocrinol 191:665–676

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Dr. Hirotaka Sakaki, D.D.S., Ph.D., Department of Dentistry and Oral Surgery, Hirosaki University Graduate School of Medicine, and Dr. Shigetada Kawabata, D.D.S., Ph.D., Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, for helpful suggestions and comments. This work was supported by Grants-in-Aid for Scientific Research (C) (Nos. 17592063, 19500558, 19592280, 20590532) from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akinori Kusumi.

About this article

Cite this article

Kusumi, A., Kusumi, T., Miura, J. et al. Passage-affected competitive regulation of osteoprotegerin synthesis and the receptor activator of nuclear factor-κB ligand mRNA expression in normal human osteoblasts stimulated by the application of cyclic tensile strain. J Bone Miner Metab 27, 653–662 (2009). https://doi.org/10.1007/s00774-009-0085-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-009-0085-3

Keywords

Navigation