Skip to main content

Advertisement

Log in

Bone quantity and quality in Brazilian female schoolchildren and adolescents

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The aim of the present study was to evaluate quantitative ultrasound parameters of the finger phalanges bones (AD-SoS, amplitude-dependent speed of sound, and BTT, bone transmission time) of schoolchildren, using a DBM Sonic device (IGEA, Carpi, Italy), to obtain normative values for the Brazilian population. The sample consisted of 1,775 healthy schoolchildren, all females, aged 8–17 years. We observed a progressive increase for the variables of weight, height, body mass index (BMI), AD-SoS, and BTT with advancing age. Results for AD-SoS showed increasing and significant variation from 8 to 17 years old (1,938–2,103 m/s, an increase of 8.52%, P < 0.0001), and also for BTT (0.84–1.45 μs, an increase of 72.6%, P < 0.0001). A gradual increase in the values of AD-SoS and BTT was observed with advances in pubertal stages. There was an interaction between the variables of age, height, and pubertal stages, predicting AD-SoS (R 2 = 0.49) and BTT (R 2 = 0.53). The study showed that AD-SoS and BTT, evaluated by means of bone ultrasonometry of the phalanges in females, increase gradually with age, being more evident during puberty, probably as a reflex of the structural organization of bone growth and development, or changes in the content of the bone tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonjour JP, Theintz G, Buchs B, Sloman D, Rizzoli R (1991) Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab 73:555–563

    PubMed  CAS  Google Scholar 

  2. Theintz G, Buchs B, Rizzoli R, Sloman D, Clavien H, Sizonenko PC, Bonjour JP (1992) Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab 75:1060–1065

    Article  PubMed  CAS  Google Scholar 

  3. Mora S, Gilsanz V (2003) Establishment of peak bone mass. Endocrinol Metab Clin N Am 32:39–63

    Article  Google Scholar 

  4. Katzman DK, Bachrach LK, Carter DR, Marcus R (1991) Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. J Clin Endocrinol Metab 73:1332–1339

    Article  PubMed  CAS  Google Scholar 

  5. Heaney RP, Abrams S, Dawson-Hughes B, Looker A, Marcus R, Matkovic V, Weaver C (2000) Peak bone mass. Osteoporos Int 11:985–1009

    Article  PubMed  CAS  Google Scholar 

  6. Boot AM, Ridder MAJ, Pols HAPP, Krenning EP, Muinck Keizer-Schrama MPF (1997) Bone mineral density in children and adolescents: relation to puberty, calcium intake, and physical activity. J Clin Endocrinol Metab 82:57–62

    Article  PubMed  CAS  Google Scholar 

  7. Hans D, Wu C, Njeh CF, Zhao S, Augat P, Newitt D, Link T, Lu Y, Majumdar S, Genant HK (1999) Ultrasound velocity of trabecular bones reflects mainly bone density and elasticity. Calcif Tissue Int 64:18–23

    Article  PubMed  CAS  Google Scholar 

  8. Prais D, Diamond G, Kattan A, Salzberg J, Inbar D (2008) The effect of calcium intake and physical activity on bone quantitative ultrasound measurements in children: a pilot study. J Bone Miner Metab 26(3):248–253

    Article  PubMed  CAS  Google Scholar 

  9. Lu PW, Cowell CT, Lloyd-Jones SA, Briody JN, Howman-Giles R (1996) Volumetric bone mineral density in normal subjects, aged 5–27 years. J Clin Endocrinol Metab 81:1586–1590

    Article  PubMed  CAS  Google Scholar 

  10. Wren TAL, Liu X, Pitukcheewanont P, Gilsanz V (2005) Bone acquisition in health children and adolescents: comparisons of dual-energy X-ray absorptiometry and computed tomography measures. J Clin Endocrinol Metab 90:1925–1928

    Article  PubMed  CAS  Google Scholar 

  11. Carter DR, Bouxsein ML, Marcus R (1992) New approaches for interpreting projected bone densitometry data. J Bone Miner Res 7:137–145

    Article  PubMed  CAS  Google Scholar 

  12. Sundberg M, Gardsell P, Johnell O, Ornstein E, Karlsson MK, Sernbo I (2003) Pubertal bone growth in femoral necks predominantly characterized by increased bone size and not by increased bone density: 4-year longitudinal study. Osteoporos Int 14:548–558

    Article  PubMed  CAS  Google Scholar 

  13. Wüster C, Aalbanese C, De Aloysio D, Duboeuf F, Gambacciani S, Gonelli S, Glüer CC, Hans D, Joly J, Reginster JY, De Terlizzi F, Cadossi R (2000) Phalangeal osteosonogrammetry study: age-related changes, diagnostic sensitivity, and discrimination power. J Bone Miner Res 15:1603–1614

    Article  PubMed  Google Scholar 

  14. Barkmann R, Lüsse S, Stampa B, Sakata S, Heller M, Glüer CC (2000) Assessment of the geometry of human finger phalanges using quantitative ultrasound in vivo. Osteoporos Int 11:745–755

    Article  PubMed  CAS  Google Scholar 

  15. Ballester JG, San Julian CA, Ariznabarreta LS (2001) Bone mineral density determination by osteosonography in healthy children and adolescents: normal values. An Esp Pediatr 54:540–546

    Google Scholar 

  16. Halaba Z, Pluskiewicz W (1997) The assessment of development of bone mass in children by quantitative ultrasound through the proximal phalanxes of the hand. Ultrasound Med Biol 23:1331–1335

    Article  PubMed  CAS  Google Scholar 

  17. Baroncelli GI, Federico G, Bertelloni S, de Terlizzi F, Cadossi R, Saggese G (2001) Bone quality assessment by quantitative ultrasound of proximal phalanxes of the hand in healthy subjects aged 3–21 years. Pediatr Res 49:713–718

    Article  PubMed  CAS  Google Scholar 

  18. Wüster C, Hadji P (2001) Use of quantitative ultrasound densitometry (QUS) in male osteoporosis. Calcif Tissue Int 69:225–228

    Article  PubMed  Google Scholar 

  19. Horlick M, Wang J, Pierson RN, Thornton JC (2004) Prediction models for evaluation of total-body bone mass with dual-energy x-ray absorptiometry among children and adolescents. Pediatrics 114:337–345

    Article  Google Scholar 

  20. Dib L, Arabi A, Maalouf J, Nabulsi M, Gel-Hajj Fuleihan (2005) Impact of anthropometric, lifestyle, and body composition variables on ultrasound measurements in school children. Bone (NY) 36:736–742

    Google Scholar 

  21. Baroncelli GI, Federico G, Vignolo M, Valerio G, Del Puente A, Maghnie M, Baserga M, Farello G, Saggese G (2006) Cross-sectional reference data for phalangeal quantitative ultrasound from early childhood to young-adulthood according to gender, age, skeletal growth, and pubertal development. Bone (NY) 39:159–173

    Google Scholar 

  22. Vignolo M, Parodi A, Mascagni A, Torrisi C, De Terlizzi F, Aicardi G (2006) Longitudinal assessment of bone quality by quantitative ultrasonography in children and adolescents. Ultrasound Med Biol 32:1003–1010

    Article  PubMed  CAS  Google Scholar 

  23. National Center for Health Statistics (2000). Available at: http://www.cdc.gov/growthcharts. Accessed 25 Nov 2006

  24. Marshall WA, Tanner SM (1969) Variations in the pattern of pubertal changes in girls. Arch Dis Child 44:291–303

    Article  PubMed  CAS  Google Scholar 

  25. Njeh CF, Boivin CM, Langton CM (1997) The role of ultrasound in the assessment of osteoporosis: a review. Osteoporos Int 7:7–22

    Article  PubMed  CAS  Google Scholar 

  26. Njeh CF, Richards A, Boivin CM, Hans D, Fuerst T, Genant HK (1999) Factors influencing the speed of sound through the proximal phalanges. J Clin Densitom 2:241–249

    Article  PubMed  CAS  Google Scholar 

  27. Cadossi R, Canè V (1996) Pathways of transmission of ultrasound energy through the distal metaphysis of the second phalanx of pigs: an in vitro study. Osteoporos Int 6:196–206

    Article  PubMed  CAS  Google Scholar 

  28. Barkmann R, Rohrschneider W, Vierling M, Tröger J, De Terlizzi F, Cadossi R, Heller M, Glüer CC (2002) German pediatric reference data for quantitative transverse transmission ultrasound of finger phalanges. Osteoporos Int 13:55–61

    Article  PubMed  CAS  Google Scholar 

  29. Cadossi R, de Terlizzi F, Cane V, Fini M, Wuster C (2000) Assessment of bone architecture with ultrasonometry: experimental and clinical experience. Horm Res 54(Suppl 1):9–18

    PubMed  CAS  Google Scholar 

  30. Lee SH, Desai SS, Shetty G, Song HR, Lee SH, Hur CY, Lee JC (2007) Bone mineral density of proximal femur and spine in Korean children between 2 and 18 years of age. J Bone Miner Metab 25(6):423–430

    Article  PubMed  Google Scholar 

  31. Rubin K, Schirduan V, Gendreau P, Sarfarazi M, Mendola R, Daisky G (1993) Predictors of axial and peripheral bone mineral density in health children and adolescents, with special attention to the role of puberty. J Pediatr 123:863–870

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their thanks to the Municipal Education Office, the Regional Education Centre of Cascavel/PR, directors and teachers of the schools, family members and girls who participated in the research, and to all the staff who helped in the data gathering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gil Guerra-Junior.

About this article

Cite this article

Santos, K.D., Petroski, E.L., Ribeiro, R.R. et al. Bone quantity and quality in Brazilian female schoolchildren and adolescents. J Bone Miner Metab 27, 507–512 (2009). https://doi.org/10.1007/s00774-009-0067-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-009-0067-5

Keywords

Navigation