Skip to main content

Advertisement

Log in

Bovine dentine organic matrix down-regulates osteoclast activity

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Physiological root resorption is a phenomenon that normally takes place in deciduous teeth; root resorption of permanent teeth occurs only under pathological conditions. The molecular mechanisms underlying these processes are still unclear. Our previous study showed that osteoclasts cultured on deciduous dentine exhibited a higher degree of resorption and higher levels of cathepsin K and MMP-9 mRNA than osteoclasts cultured on permanent dentine. These results could be because of different susceptibilities to acid and the different organic matrices between deciduous and permanent dentine. Thus, the purpose of this study was to investigate the effect of dentine extracts from bovine deciduous and permanent dentine on osteoclast activity. Osteoclasts, obtained from mouse bone marrow cells co-cultured with an osteoblast-rich fraction in the presence of 1,25-(OH)2-vitamin D3 and PGE2, were incubated with or without 0.6 M HCl extracts from bovine deciduous or permanent dentine for 48 h. TRAP positive cell number, TRAP activity, the areas of resorption pits, and mRNA levels of TRAP, v-ATPase, calcitonin receptor, cathepsin K, and MMP-9 were examined. The results illustrated that TRAP activity, the resorbed area, and the mRNA levels of osteoclast marker genes seemed to be suppressed by both deciduous and permanent dentine extracts. These findings indicate that some factors that suppress osteoclast activity are contained in both deciduous and permanent dentine extracts. Although there was no significant difference in osteoclast activity between deciduous and permanent dentine extracts, osteoclasts incubated with permanent dentine extracts tend to exhibit less resorption activity than those incubated with deciduous dentine extracts. However, we could not clearly explain the causes of this.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ten Cate AR, Anderson RD (1986) An ultrastructural study of tooth resorption in the kitten. J Dent Res 65:1087–1093

    PubMed  CAS  Google Scholar 

  2. Sasaki T, Shimizu T, Watanabe C, Hiyoshi Y (1990) Cellular roles in physiological root resorption of deciduous teeth in the cat. J Dent Res 69:67–74

    PubMed  CAS  Google Scholar 

  3. Boyde A, Ali NN, Jones SJ (1984) Resorption of dentine by isolated osteoclasts in vitro. Br Dent J 156:216–220

    Article  PubMed  CAS  Google Scholar 

  4. Sasaki T (2003) Differentiation and functions of osteoclasts and odontoclasts in mineralized tissue resorption. Microsc Res Tech 61:483–495

    Article  PubMed  CAS  Google Scholar 

  5. Sasaki T, Motegi N, Suzuki H, Watanabe C, Tadokoro K, Yanagisawa T, Higashi S (1988) Dentin resorption mediated by odontoclasts in physiological root resorption of human deciduous teeth. Am J Anat 183:303–315

    Article  PubMed  CAS  Google Scholar 

  6. Marks SC Jr, Cahill DR (1984) Experimental study in the dog of the non-active role of the tooth in the eruptive process. Arch Oral Biol 29:311–322

    Article  PubMed  Google Scholar 

  7. Obersztyn A (1963) Experimental investigation of factors causing resorption of deciduous teeth. J Dent Res 42:660–674

    PubMed  CAS  Google Scholar 

  8. Ericson S, Bjerklin K, Falahat B (2002) Does the canine dental follicle cause resorption of permanent incisor roots? A computed tomographic study of erupting maxillary canines. Angle Orthod 72:95–104

    PubMed  Google Scholar 

  9. Butler WT, Ritchie H (1995) The nature and functional significance of dentin extracellular matrix proteins. Int J Dev Biol 39:169–179

    PubMed  CAS  Google Scholar 

  10. Takata T, D’Errico JA, Atkins KB, Berry JE, Strayhorn C, Taichman RS, Somerman MJ (1998) Protein extracts of dentin affect proliferation and differentiation of osteoprogenitor cells in vitro. J Periodontol 69:1247–1255

    PubMed  CAS  Google Scholar 

  11. Finkelman RD, Mohan S, Jennings JC, Taylor AK, Jepsen S, Baylink DJ (1990) Quantitation of growth factors IGF-I, SGF/IGF-II, and TGF-beta in human dentin. J Bone Miner Res 5:717–723

    Article  PubMed  CAS  Google Scholar 

  12. Butler WT, Mikulski A, Urist MR, Bridges G, Uyeno S (1977) Noncollagenous proteins of a rat dentin matrix possessing bone morphogenetic activity. J Dent Res 56:228–232

    PubMed  CAS  Google Scholar 

  13. Finkelman RD (1992) Growth factors in bones and teeth. J Calif Dent Assoc 20:23–29

    PubMed  CAS  Google Scholar 

  14. Lee A, Schneider G, Finkelstein M, Southard T (2004) Root resorption: the possible role of extracellular matrix proteins. Am J Orthod Dentofacial Orthop 126:173–177

    Article  PubMed  Google Scholar 

  15. Valverde P, Tu Q, Chen J (2005) BSP and RANKL induce osteoclastogenesis and bone resorption synergistically. J Bone Miner Res 20:1669–1679

    Article  PubMed  CAS  Google Scholar 

  16. Yao Z, Xing L, Qin C, Schwarz EM, Boyce BF (2008) Osteoclast precursor interaction with bone matrix induces osteoclast formation directly by an IL-1-mediated autocrine mechanism. J Biol Chem 283:9917–9924

    Article  PubMed  CAS  Google Scholar 

  17. Varghese BJ, Aoki K, Shimokawa H, Ohya K, Takagi Y (2006) Bovine deciduous dentine is more susceptible to osteoclastic resorption than permanent dentine: results of quantitative analyses. J Bone Miner Metab 24:248–254

    Article  PubMed  Google Scholar 

  18. Takagi Y, Veis A (1984) Isolation of phosphophoryn from human dentin organic matrix. Calcif Tissue Int 36:259–265

    Article  PubMed  CAS  Google Scholar 

  19. Jimi E, Nakamura I, Amano H, Taguchi Y, Tsurukai T, Tamura M, Takahashi N, Suda T (1996) Osteoclast function is activated by osteoblastic cells through a mechanism involving cell-to-cell contact. Endocrinology 137:2187–2190

    CAS  Google Scholar 

  20. Aoki K, Saito H, Itzstein C, Ishiguro M, Shibata T, Blanque R, Mian AH, Takahashi M, Suzuki Y, Yoshimatsu M, Yamaguchi A, Deprez P, Mollat P, Murali R, Ohya K, Horne WC, Baron R (2006) A TNF receptor loop peptide mimic blocks RANK ligand-induced signaling, bone resorption, and bone loss. J Clin Invest 116:1525–1534

    Article  PubMed  CAS  Google Scholar 

  21. Akatsu T, Tamura T, Takahashi N, Udagawa N, Tanaka S, Sasaki T, Yamaguchi A, Nagata N, Suda T (1992) Preparation and characterization of a mouse osteoclast-like multinucleated cell population. J Bone Miner Res 7:1297–1306

    PubMed  CAS  Google Scholar 

  22. Nakasato YR, Janckila AJ, Halleen JM, Vaananen HK, Walton SP, Yam LT (1999) Clinical significance of immunoassays for type-5 tartrate-resistant acid phosphatase. Clin Chem 45:2150–2157

    PubMed  CAS  Google Scholar 

  23. Freilich L (1971) Ultrastructure and acid phosphatase cytochemistry of odontoclasts: effects of parathyroid extract. J Dent Res 50:1047–1055

    CAS  Google Scholar 

  24. Oshiro T, Shibasaki Y, Martin TJ, Sasaki T (2001) Immunolocalization of vacuolar-type H+-ATPase, cathepsin K, matrix metalloproteinase-9, and receptor activator of NFkappaB ligand in odontoclasts during physiological root resorption of human deciduous teeth. Anat Rec 264:305–311

    Article  PubMed  CAS  Google Scholar 

  25. Minkin C (1982) Bone acid phosphatase: tartrate-resistant acid phosphatase as a marker of osteoclast function. Calcif Tissue Int 34:285–290

    Article  PubMed  CAS  Google Scholar 

  26. Kirstein B, Chambers TJ, Fuller K (2006) Secretion of tartrate-resistant acid phosphatase by osteoclasts correlates with resorptive behavior. J Cell Biochem 98:1085–1094

    Article  PubMed  CAS  Google Scholar 

  27. Lee SK, Goldring SR, Lorenzo JA (1995) Expression of the calcitonin receptor in bone marrow cell cultures and in bone: a specific marker of the differentiated osteoclast that is regulated by calcitonin. Endocrinology 136:4572–4581

    Article  PubMed  CAS  Google Scholar 

  28. Drake FH, Dodds RA, James IE, Connor JR, Debouck C, Richardson S, Lee-Rykaczewski E, Coleman L, Rieman D, Barthlow R, Hastings G, Gowen M (1996) Cathepsin K, but not cathepsins B, L, or S, is abundantly expressed in human osteoclasts. J Biol Chem 271:12511–12516

    Article  PubMed  CAS  Google Scholar 

  29. Linsuwanont B, Takagi Y, Ohya K, Shimokawa H (2002) Localization of cathepsin K in bovine odontoclasts during deciduous tooth resorption. Calcif Tissue Int 70:127–133

    Article  PubMed  CAS  Google Scholar 

  30. Saftig P, Hunziker E, Wehmeyer O, Jones S, Boyde A, Rommerskirch W, Moritz JD, Schu P, von Figura K (1998) Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci USA 95:13453–13458

    Article  PubMed  CAS  Google Scholar 

  31. Gowen M, Lazner F, Dodds R, Kapadia R, Feild J, Tavaria M, Bertoncello I, Drake F, Zavarselk S, Tellis I, Hertzog P, Debouck C, Kola I (1999) Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. J Bone Miner Res 14:1654–1663

    Article  PubMed  CAS  Google Scholar 

  32. Tezuka K, Nemoto K, Tezuka Y, Sato T, Ikeda Y, Kobori M, Kawashima H, Eguchi H, Hakeda Y, Kumegawa M (1994) Identification of matrix metalloproteinase 9 in rabbit osteoclasts. J Biol Chem 269:15006–15009

    PubMed  CAS  Google Scholar 

  33. Linsuwanont B, Takagi Y, Ohya K, Shimokawa H (2002) Expression of matrix metalloproteinase-9 mRNA and protein during deciduous tooth resorption in bovine odontoclasts. Bone 31:472–478

    Article  PubMed  CAS  Google Scholar 

  34. Sasaki T, Hong MH, Udagawa N, Moriyama Y (1994) Expression of vacuolar H(+)-ATPase in osteoclasts and its role in resorption. Cell Tissue Res 278:265–271

    PubMed  CAS  Google Scholar 

  35. Jurdic P, Saltel F, Chabadel A, Destaing O (2006) Podosome and sealing zone: specificity of the osteoclast model. Eur J Cell Biol 85:195–202

    Article  PubMed  CAS  Google Scholar 

  36. Soriano P, Montgomery C, Geske R, Bradley A (1991) Targeted disruption of the c-Src proto-oncogene leads to osteopetrosis in mice. Cell 64:693–702

    Article  PubMed  CAS  Google Scholar 

  37. Destaing O, Sanjay A, Itzstein C, Horne WC, Toomre D, De Camilli P, Baron R (2008) The tyrosine kinase activity of c-Src regulates actin dynamics and organization of podosomes in osteoclasts. Mol Biol Cell 19:394–404

    Article  PubMed  CAS  Google Scholar 

  38. Sanjay A, Houghton A, Neff L, DiDomenico E, Bardelay C, Antoine E, Levy J, Gailit J, Bowtell D, Horne WC, Baron R (2001) Cbl associates with Pyk2 and Src to regulate Src kinase activity, alpha(v)beta(3) integrin-mediated signaling, cell adhesion, and osteoclast motility. J Cell Biol 152:181–195

    Article  PubMed  CAS  Google Scholar 

  39. Duong LT, Lakkakorpi PT, Nakamura I, Machwate M, Nagy RM, Rodan GA (1998) PYK2 in osteoclasts is an adhesion kinase, localized in the sealing zone, activated by ligation of alpha(v)beta3 integrin, and phosphorylated by src kinase. J Clin Invest 102:881–892

    Article  PubMed  CAS  Google Scholar 

  40. Miyazaki T, Sanjay A, Neff L, Tanaka S, Horne WC, Baron R (2004) Src kinase activity is essential for osteoclast function. J Biol Chem 279:17660–17666

    Article  PubMed  CAS  Google Scholar 

  41. Takagi Y, Veis A (1981) Matrix protein difference between human normal and dentinogenesis imperfecta dentin. In: Veis A (ed) The chemistry and biology of mineralized connective tissues. Elsevier, North-Holland, New York, p 233

    Google Scholar 

  42. Pfeilschifter J, Seyedin SM, Mundy GR (1988) Transforming growth factor beta inhibits resorption in fetal rat long bone cultures. J Clin Invest 82:680–685

    Article  PubMed  CAS  Google Scholar 

  43. Murakami T, Yamamoto M, Ono K, Nishikawa M, Nagata N, Motoyoshi K, Akatsu T (1998) Transforming growth factor-beta1 increases mRNA levels of osteoclastogenesis inhibitory factor in osteoblastic/stromal cells and inhibits the survival of murine osteoclast-like cells. Biochem Biophys Res Commun 252:747–752

    Article  PubMed  CAS  Google Scholar 

  44. Quinn JM, Itoh K, Udagawa N, Hausler K, Yasuda H, Shima N, Mizuno A, Higashio K, Takahashi N, Suda T, Martin TJ, Gillespie MT (2001) Transforming growth factor beta affects osteoclast differentiation via direct and indirect actions. J Bone Miner Res 16:1787–1794

    Article  PubMed  CAS  Google Scholar 

  45. Takahashi N, Ejiri S, Yanagisawa S, Ozawa H (2007) Regulation of osteoclast polarization. Odontology 95:1–9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. B. J. Varghese for technical assistance. This study was supported by a Grant-in-Aid for Scientific Research (18390497 and 20592392) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoyata Shimokawa.

About this article

Cite this article

Sriarj, W., Aoki, K., Ohya, K. et al. Bovine dentine organic matrix down-regulates osteoclast activity. J Bone Miner Metab 27, 315–323 (2009). https://doi.org/10.1007/s00774-009-0063-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-009-0063-9

Keywords

Navigation