Skip to main content

Advertisement

Log in

An active role for soluble and membrane intercellular adhesion molecule-1 in osteoclast activity in vitro

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

In osteoclastogenesis, the intercellular adhesion molecule (ICAM)-1 provides a high-affinity adhesion between the osteoblast and the osteoclast precursor, thereby facilitating the interaction between receptor activator nuclear factor κB ligand (RANKL) and its receptor RANK. However, the role of soluble ICAM (sICAM) in that process remains obscure. Therefore, the purpose of this study was to determine whether sICAM and ICAM-1 play an active role in the formation and maturation of osteoclasts. Monocytes isolated from healthy donors and cultured alone or with human osteoblast were stimulated with macrophage colony-stimulating factor, sRANKL, ICAM-1 monoclonal antibody (mAb), leucocyte function antigen (LFA)-1 mAb, and/or sICAM to produce mature osteoclasts. Release of TRAP 5b and resorption area were analyzed as markers of osteoclast formation and function, respectively. The effect of ICAM-1 and sICAM stimulation on apoptosis, cathepsin K, αvβ3, collagen-1, and on RANKL/osteoprotegerin (OPG)/RANK expression was evaluated. sICAM did not modify the release of TRAP 5b from osteoclast precursors in both mono and co-culture, but induced a significant increase in resorption area in both culture systems, as well as a positive effect on cathepsin K and αvβ3 protein expression. Cross-linking ICAM-1 on osteoblast resulted in increased RANKL mRNA and caspase-3 protein expression, decreased collagen-1 mRNA expression, and decreased osteoblast survival. Stimulation of preosteoclast with sICAM produced a significant increase in preosteoclast survival and a decrease in caspase-3 expression. These results indicate that ICAM-1 and sICAM have a dual effect on bone homeostasis, increasing osteoclast activity while lowering osteoblast anabolic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rodan GA, Martin TJ (2000) Therapeutic approaches to bone diseases. Science 289:1508–1514

    Article  PubMed  CAS  Google Scholar 

  2. Hofbauer LC, Heufelder AE (1998) Osteoprotegerin and its cognate ligand: a new paradigm of osteoclastogenesis. Eur J Endocrinol 139:152–154

    Article  PubMed  CAS  Google Scholar 

  3. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 95:3597–3602

    Article  PubMed  CAS  Google Scholar 

  4. Okada Y, Morimoto I, Ura K, Watanabe K, Eto S, Kumegawa M, Raisz L, Pilbeam C, Tanaka Y (2002) Cell-to-cell adhesion via intercellular adhesion molecule-1 and leukocyte functionassociated antigen-1 pathway is involved in 1alpha, 25(OH)2D3, PTH and IL-1alpha-induced osteoclast differentiation and bone resorption Endocr J 49:483–495

    Article  PubMed  CAS  Google Scholar 

  5. Kurachi T, Morita I, Murota S (1993) Involvement of adhesion molecules LFA-1 and ICAM-1 in osteoclast development. Biochim Biophys Acta 1178:259–266

    Article  PubMed  CAS  Google Scholar 

  6. Harada H, Kukita T, Kukita A, Iwamoto Y, Iijima T (1998) Involvement of lymphocyte function-associated antigen-1 and intercellular adhesion molecule-1 in osteoclastogenesis: a possible role in direct interaction between osteoclast precursors. Endocrinology 139:3967–3975

    Article  PubMed  CAS  Google Scholar 

  7. Lavigne P, Benderdour M, Shi Q, Lajeunesse D, Fernandes JC (2005) Involvement of ICAM-1 in bone metabolism: a potential target in the treatment of bone diseases? Expert Opin Biol Ther 5:313–320

    Article  PubMed  CAS  Google Scholar 

  8. Lavigne P, Benderdour M, Lajeunesse D, Shi Q, Fernandes JC (2004) Expression of ICAM-1 by osteoblasts in healthy individuals and in patients suffering from osteoarthritis and osteoporosis. Bone (NY) 35:463–470

    CAS  Google Scholar 

  9. Rieckmann P, Michel U, Albrecht M, Bruck W, Wockel L, Felgenhauer K 1995 Soluble forms of intercellular adhesion molecule-1 (ICAM-1) block lymphocyte attachment to cerebral endothelial cells. J Neuroimmunol 60:9–15

    Article  PubMed  CAS  Google Scholar 

  10. Kusterer K, Bojunga J, Enghofer M, Heidenthal E, Usadel KH, Kolb H, Martin S (1998) Soluble ICAM-1 reduces leukocyte adhesion to vascular endothelium in ischemia-reperfusion injury in mice. Am J Physiol 275:G377–G380

    PubMed  CAS  Google Scholar 

  11. Lukacs NW, Chensue SW, Strieter RM, Warmington K, Kunkel SL (1994) Inflammatory granuloma formation is mediated by TNF-alpha-inducible intercellular adhesion molecule-1. J Immunol 152:5883–5889

    PubMed  CAS  Google Scholar 

  12. McCabe SM, Riddle L, Nakamura GR, Prashad H, Mehta A, Berman PW, Jardieu P (1993) sICAM-1 enhances cytokine production stimulated by alloantigen. Cell Immunol 150:364–375

    Article  PubMed  CAS  Google Scholar 

  13. Schmal H, Czermak BJ, Lentsch AB, Bless NM, Beck-Schimmer B, Friedl HP, Ward PA (1998) Soluble ICAM-1 activates lung macrophages and enhances lung injury. J Immunol 161:3685–3693

    PubMed  CAS  Google Scholar 

  14. Van Seventer GA, Shimizu Y, Horgan KJ, Shaw S (1990) The LFA-1 ligand ICAM-1 provides an important costimulatory signal for T cell receptor-mediated activation of resting T cells. J Immunol 144:4579–4586

    PubMed  Google Scholar 

  15. Konig A, Muhlbauer RC, Fleisch H (1988) Tumor necrosis factor alpha and interleukin-1 stimulate bone resorption in vivo as measured by urinary [3H]tetracycline excretion from prelabeled mice. J Bone Miner Res 3:621–627

    PubMed  CAS  Google Scholar 

  16. Kotake S, Sato K, Kim KJ, Takahashi N, Udagawa N, Nakamura I, Yamaguchi A, Kishimoto T, Suda T, Kashiwazaki S (1996) Interleukin-6 and soluble interleukin-6 receptors in the synovial fluids from rheumatoid arthritis patients are responsible for osteoclastlike cell formation. J Bone Miner Res 11:88–95

    PubMed  CAS  Google Scholar 

  17. Kukita T, Nomiyama H, Ohmoto Y, Kukita A, Shuto T, Hotokebuchi T, Sugioka Y, Miura R, Iijima T (1997) Macrophage inflammatory protein-1 alpha (LD78) expressed in human bone marrow: its role in regulation of hematopoiesis and osteoclast recruitment. Lab Invest 76:399–406

    PubMed  CAS  Google Scholar 

  18. Thomson BM, Mundy GR, Chambers TJ (1987) Tumor necrosis factors alpha and beta induce osteoblastic cells to stimulate osteoclastic bone resorption. J Immunol 138:775–779

    PubMed  CAS  Google Scholar 

  19. Tanaka Y, Maruo A, Fujii K, Nomi M, Nakamura T, Eto S, Minami Y (2000) Intercellular adhesion molecule 1 discriminates functionally different populations of human osteoblasts: characteristic involvement of cell cycle regulators. J Bone Miner Res 15:1912–1923

    Article  PubMed  CAS  Google Scholar 

  20. Silvestris F, Cafforio P, Calvani N, Dammacco F (2004) Impaired osteoblastogenesis in myeloma bone disease: role of upregulated apoptosis by cytokines and malignant plasma cells. Br J Haematol 126:475–486

    Article  PubMed  Google Scholar 

  21. Jimi E, Nakamura I, Amano H, Taguchi Y, Tsurukai T, Tamura M, Takahashi N, Suda T (1996) Osteoclast function is activated by osteoblastic cells through a mechanism involving cell-to-cell contact. Endocrinology 137:2187–2190

    CAS  Google Scholar 

  22. Udagawa N, Takahashi N, Akatsu T, Sasaki T, Yamaguchi A, Kodama H, Martin TJ, Suda T (1989) The bone marrow-derived stromal cell lines MC3T3-G2/PA6 and ST2 support osteoclast-like cell differentiation in cocultures with mouse spleen cells. Endocrinology 125:1805–1813

    Article  PubMed  CAS  Google Scholar 

  23. Tanaka Y, Morimoto I, Nakano Y, Okada Y, Hirota S, Nomura S, Nakamura T, Eto S (1995) Osteoblasts are regulated by the cellular adhesion through ICAM-1 and VCAM-1. J Bone Miner Res 10:1462–1469

    Article  PubMed  CAS  Google Scholar 

  24. Tani-Ishii N, Penningeer JM, Matsumo G, Teranaka T, Umemoto T (2002) The role of LFA-1 in osteoclast development induced by co-cultures of mouse bone marrow cells and MC3T3-G2/PA6 cells. J Periodont Res 37:184–191

    Article  PubMed  CAS  Google Scholar 

  25. Orlandini SZ, Formigli L, Benvenuti S, Lasagni L, Franchi A, Masi L, Bernabei PA, Santini V, Brandi ML (1995) Functional and structural interactions between osteoblastic and preosteoclastic cells in vitro. Cell Tissue Res 281:33–42

    Article  PubMed  CAS  Google Scholar 

  26. Fuller K, Kirstein B, Chambers TJ (2006) Murine osteoclast formation and function: differential regulation by humoral agents. Endocrinology 147:1979–1985

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Lavigne.

About this article

Cite this article

Fernandes, J.C., Shi, Q., Benderdour, M. et al. An active role for soluble and membrane intercellular adhesion molecule-1 in osteoclast activity in vitro. J Bone Miner Metab 26, 543–550 (2008). https://doi.org/10.1007/s00774-008-0866-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-008-0866-0

Key words

Navigation