Skip to main content
Log in

Beneficial effects of conjugated linoleic acid and exercise on bone of middle-aged female mice

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Conjugated linoleic acids (CLA) are a group of polyunsaturated fatty acids that has recently been shown to have several beneficial effects on different diseases, including prevention of bone loss. The important feature of CLA is to reduce fat mass, thereby reducing body weight significantly. Although loss of body weight is known to increase bone loss, there is increasing evidence that CLA maybe beneficial to bone. Another factor that can reduce body weight is exercise (EX). It is well established that moderate EX stimulates bone formation. In this study, we analyzed the changes in bone using pQCT densitometry in middle-aged C57Bl/6 mice fed CLA (0.5%) and/or exercised. Twelve-month-old mice were divided into the following groups: group 1, corn oil, sedentary (CO SED); group 2, corn oil, exercise (CO EX); group 3, CLA, sedentary (CLA SED); and group 4, CLA, exercise (CLA EX). Mice were maintained in the respective experimental regimens for 10 weeks, after which mice were scanned using DEXA and killed. The lumbar vertebrae, femur, and tibia were analyzed using pQCT densitometry. CLA, when given alone or in combination with EX, significantly reduced body weight and increased lean mass. CLA treatment also significantly increased bone mass. Further, additional increase in bone mass was observed in mice treated with a combination of CLA and EX in almost all the bone sites analyzed. We conclude that CLA, when consumed as a dietary supplement along with moderate treadmill EX, significantly increases bone mass in middle-aged female mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. World Health Organization (1988) Obesity: preventing and managing the global epidemic. Report of WHO consultation on obesity. World Health Organization, Geneva

    Google Scholar 

  2. Eckel RH, Krauss RM (1998) American Heart Association call to action: obesity as a major risk factor for coronary heart disease. AHA Nutrition Committee. Circulation 97(21):2099–2100

    PubMed  CAS  Google Scholar 

  3. Baskin ML, Ard J, Franklin F, Allison DB (2005) Prevalence of obesity in the United States. Obes Rev 6(1):5–7

    Article  PubMed  CAS  Google Scholar 

  4. Dubnov G, Brzezinski A, Berry EM (2003) Weight control and the management of obesity after menopause: the role of physical activity. Maturitas 44(2):89–101

    Article  PubMed  Google Scholar 

  5. Pollock ML GG, Butcher JD, Despres J-P, Dishman R, Franklin BA, Garber CE (1990) ACSM Position Stand on the recommended quantity of exercise fro developing and maintaining cardiorespiratory and muscular fitness and flexibility in adults. Med Sci Sports Exerc 30:975–991

    Google Scholar 

  6. Kuskowski-Wolk A (1990) Prevalence of obesity in Sweden: cross-sectional study of a representative adult population. J Intern Med 227:241–246

    Google Scholar 

  7. Ley CJ, Lees B, Stevenson JC (1992) Sex-and menopause-associated changes in body-fat distribution. Am J Clin Nutr 55(5): 950–954

    PubMed  CAS  Google Scholar 

  8. Roche HM NE, Nugent A, Gibney MJ (2001) Conjugated linoleic acid: a novel therapeutic nutrient. Nutr Res Rev 14:173–187

    Article  CAS  PubMed  Google Scholar 

  9. Parodi PW (1997) Cows’ milk fat components as potential anticarcinogenic agents. J Nutr 127(6):1055–1060

    PubMed  CAS  Google Scholar 

  10. Eschen C, Andreassen TT (1995) Growth hormone normalizes vertebral strength in ovariectomized rats. Calcif Tissue Int 57(5): 392–396

    Article  PubMed  CAS  Google Scholar 

  11. Bhattacharya A, Banu J, Rahman M, Causey J, Fernandes G (2006) Biological effects of conjugated linoleic acids in health and disease. J Nutr Biochem 18(7):467–474

    PubMed  Google Scholar 

  12. Park Y, Albright KJ, Storkson JM, Liu W, Pariza MW (2007) Conjugated linoleic acid (CLA) prevents body fat accumulation and weight gain in an animal model. J Food Sci 72(8):S612–S617

    Article  PubMed  CAS  Google Scholar 

  13. Gaullier JM, Halse J, Hoye K, Kristiansen K, Fagertun H, Vik H, Gudmundsen O (2005) Supplementation with conjugated linoleic acid for 24 months is well tolerated by and reduces body fat mass in healthy, overweight humans. J Nutr 135(4):778–784

    PubMed  CAS  Google Scholar 

  14. Gaullier JM, Halse J, Hoye K, Kristiansen K, Fagertun H, Vik H, Gudmundsen O (2004) Conjugated linoleic acid supplementation for 1 y reduces body fat mass in healthy overweight humans. Am J Clin Nutr 79(6):1118–1125

    PubMed  CAS  Google Scholar 

  15. Gaullier JM, Halse J, Hoivik HO, Hoye K, Syvertsen C, Nurminiemi M, Hassfeld C, Einerhand A, O’shea M, Gudmundsen O (2007) Six months supplementation with conjugated linoleic acid induces regional-specific fat mass decreases in overweight and obese. Br J Nutr 97(3):550–560

    Article  PubMed  CAS  Google Scholar 

  16. Bhattacharya A, Rahman MM, Sun D, Lawrence R, Mejia W, McCarter R, O’shea M, Fernandes G (2005) The combination of dietary conjugated linoleic acid and treadmill exercise lowers gain in body fat mass and enhances lean body mass in high fat-fed male Balb/C mice. J Nutr 135(5):1124–1130

    PubMed  CAS  Google Scholar 

  17. Belury MA (2002) Inhibition of carcinogenesis by conjugated linoleic acid: potential mechanisms of action. J Nutr 132(10): 2995–2998

    PubMed  CAS  Google Scholar 

  18. Kritchevsky D (2000) Antimutagenic and some other effects of conjugated linoleic acid. Br J Nutr 83(5):459–465

    PubMed  CAS  Google Scholar 

  19. Durgam VR, Fernandes G (1997) The growth inhibitory effect of conjugated linoleic acid on MCF-7 cells is related to estrogen response system. Cancer Lett 116(2):121–130

    Article  PubMed  CAS  Google Scholar 

  20. Kelly O, Cusack S, Jewell C, Cashman KD (2003) The effect of polyunsaturated fatty acids, including conjugated linoleic acid, on calcium absorption and bone metabolism and composition in young growing rats. Br J Nutr 90(4):743–750

    Article  PubMed  CAS  Google Scholar 

  21. Kelly O, Cashman KD (2004) The effect of conjugated linoleic acid on calcium absorption and bone metabolism and composition in adult ovariectomised rats. Prostaglandins Leukot Essent Fatty Acids 71(5):295–301

    Article  PubMed  CAS  Google Scholar 

  22. Banu J, Bhattacharya A, Rahman M, O’shea M, Fernandes G (2006) Effects of conjugated linoleic acid and exercise on bone mass in young male Balb/C mice. Lipids Health Dis 5:7

    Article  PubMed  CAS  Google Scholar 

  23. Espallargues M, Sampietro-Colom L, Estrada MD, Sola M, del Rio L, Setoain J, Granados A (2001) Identifying bone-mass-related risk factors for fracture to guide bone densitometry measurements: a systematic review of the literature. Osteoporos Int 12(10): 811–822

    Article  PubMed  CAS  Google Scholar 

  24. Shapses SA, Cifuentes M (2004) Body weight/composition and weight change: effects on bone health. In: Holick MF, Dawson-Hughes B (eds) Nutrition and Bone Health. Humana Press, Totowa, NJ, pp 549–573

    Google Scholar 

  25. Major GC, Piche ME, Bergeron J, Weisnagel SJ, Nadeau A, Lemieux S (2005) Energy expenditure from physical activity and the metabolic risk profile at menopause. Med Sci Sports Exerc 37(2):204–212

    Article  PubMed  Google Scholar 

  26. Irwin ML, Yasui Y, Ulrich CM, Bowen D, Rudolph RE, Schwartz RS, Yukawa M, Aiello E, Potter JD, McTiernan A (2003) Effect of exercise on total and intra-abdominal body fat in postmenopausal women: a randomized controlled trial. JAMA 289(3): 323–330

    Article  PubMed  Google Scholar 

  27. Donnelly JE, Smith BK (2005) Is exercise effective for weight loss with ad libitum diet? Energy balance, compensation, and gender differences. Exerc Sport Sci Rev 33(4):169–174

    Article  PubMed  Google Scholar 

  28. Shangold MM (1990) Exercise in the menopausal woman. Obstet Gynecol 75(4 suppl):53S–58S; discussion 81S–83S

    PubMed  CAS  Google Scholar 

  29. Haapasalo H, Kontulainen S, Sievanen H, Kannus P, Jarvinen M, Vuori I (2000) Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: a peripheral quantitative computed tomography study of the upper arms of male tennis players. Bone (NY) 27(3):351–357

    CAS  Google Scholar 

  30. Karlsson M (2002) Is exercise of value in the prevention of fragility fractures in men? Scand J Med Sci Sports 12(4):197–210

    Article  PubMed  Google Scholar 

  31. Hakkinen K, Newton RU, Gordon SE, McCormick M, Volek JS, Nindl BC, Gotshalk LA, Campbell WW, Evans WJ, Hakkinen A, Humphries BJ, Kraemer WJ (1998) Changes in muscle morphology, electromyographic activity, and force production characteristics during progressive strength training in young and older men. J Gerontol A Biol Sci Med Sci 53(6):B415–B423

    PubMed  CAS  Google Scholar 

  32. Nelson DA, Bouxsein ML (2001) Exercise maintains bone mass, but do people maintain exercise? J Bone Miner Res 16(2): 202–205

    Article  PubMed  CAS  Google Scholar 

  33. Banu MJ, Orhii PB, Mejia W, McCarter RJ, Mosekilde L, Thomsen JS, Kalu DN (1999) Analysis of the effects of growth hormone, voluntary exercise, and food restriction on diaphyseal bone in female F344 rats. Bone (NY) 25(4):469–480

    CAS  Google Scholar 

  34. Banu J, Orhii PB, Okafor MC, Wang L, Kalu DN (2001) Analysis of the effects of growth hormone, exercise and food restriction on cancellous bone in different bone sites in middle-aged female rats. Mech Ageing Dev 122(8):849–864

    Article  PubMed  CAS  Google Scholar 

  35. Chen MM, Yeh JK, Aloia JF, Tierney JM, Sprintz S (1994) Effect of treadmill exercise on tibial cortical bone in aged female rats: a histomorphometry and dual energy x-ray absorptiometry study. Bone (NY) 15(3):313–319

    CAS  Google Scholar 

  36. Iwamoto J, Takeda T, Ichimura S (1998) Effects of moderate intensity exercise on tibial bone mass in mature ovariectomized rats: bone histomorphometry study. Keio J Med 47(3):162–167

    PubMed  CAS  Google Scholar 

  37. Oxlund H, Andersen NB, Ortoft G, Orskov H, Andreassen TT (1998) Growth hormone and mild exercise in combination markedly enhance cortical bone formation and strength in old rats. Endocrinology 139(4):1899–1904

    Article  PubMed  CAS  Google Scholar 

  38. Gutin B, Kasper MJ (1992) Can vigorous exercise play a role in osteoporosis prevention? A review. Osteoporos Int 2(2):55–69

    Article  PubMed  CAS  Google Scholar 

  39. Lanyon LE, Goodship AE, Pye CJ, MacFie JH (1982) Mechanically adaptive bone remodelling. J Biomech 15(3):141–154

    Article  PubMed  CAS  Google Scholar 

  40. Fernandes G, Rozek M, Troyer D (1986) Reduction of blood pressure and restoration of T-cell immune function in spontaneously hypertensive rats by food restriction and/or by treadmill exercise. J Hypertens Suppl 4(3):S469–S474

    PubMed  CAS  Google Scholar 

  41. Banu J, Wang L, Kalu DN (2003) Effects of increased muscle mass on bone in male mice overexpressing IGF-I in skeletal muscles. Calcif Tissue Int 73(2):196–201

    Article  PubMed  CAS  Google Scholar 

  42. Evans EM, Racette SB (2006) Menopause and risk for obesity: how important is physical activity? J Womens Health (Larchmt) 15(2):211–213

    Google Scholar 

  43. Kreider RB, Ferreira MP, Greenwood M, Wilson M, Almada AL (2002) Effects of conjugated linoleic acid supplementation during resistance training on body composition, bone density, strength, and selected hematological markers. J Strength Cond Res 16(3): 325–334

    Article  PubMed  Google Scholar 

  44. Doyle L, Jewell C, Mullen A, Nugent AP, Roche HM, Cashman KD (2005) Effect of dietary supplementation with conjugated linoleic acid on markers of calcium and bone metabolism in healthy adult men. Eur J Clin Nutr 59(3):432–440

    Article  PubMed  CAS  Google Scholar 

  45. Brownbill RA, Petrosian M, Ilich JZ (2005) Association between dietary conjugated linoleic acid and bone mineral density in postmenopausal women. J Am Coll Nutr 24(3):177–181

    PubMed  CAS  Google Scholar 

  46. Horton TJ, Hill JO (1998) Exercise and obesity. Proc Nutr Soc 57(1):85–91

    Article  PubMed  CAS  Google Scholar 

  47. Durstine JL, Grandjean PW, Cox CA, Thompson PD (2002) Lipids, lipoproteins, and exercise. J Cardiopulmon Rehabil 22(6): 385–398

    Article  Google Scholar 

  48. Spriet LL (2002) Regulation of skeletal muscle fat oxidation during exercise in humans. Med Sci Sports Exerc 34(9):1477–1484

    Article  PubMed  CAS  Google Scholar 

  49. Murray RC, Vedi S, Birch HL, Lakhani KH, Goodship AE (2001) Subchondral bone thickness, hardness and remodelling are influenced by short-term exercise in a site-specific manner. J Orthop Res 19(6):1035–1042

    Article  PubMed  CAS  Google Scholar 

  50. Sinaki M, Canvin JC, Phillips BE, Clarke BL (2004) Site specificity of regular health club exercise on muscle strength, fitness, and bone density in women aged 29 to 45 years. Mayo Clin Proc 79(5): 639–644

    Article  PubMed  Google Scholar 

  51. Turner CH (1999) Site-specific skeletal effects of exercise: importance of interstitial fluid pressure. Bone (NY) 24(3): 161–162

    CAS  Google Scholar 

  52. Rahman MM, Bhattacharya A, Fernandes G (2006) Conjugated linoleic acid inhibits osteoclast differentiation of RAW264.7 cells by modulating RANKL signaling. J Lipid Res 47(8):1739–1748

    Article  PubMed  CAS  Google Scholar 

  53. Rahman SM, Wang Y, Yotsumoto H, Cha J, Han S, Inoue S, Yanagita T (2001) Effects of conjugated linoleic acid on serum leptin concentration, body-fat accumulation, and beta-oxidation of fatty acid in OLETF rats. Nutrition 17(5):385–390

    Article  PubMed  CAS  Google Scholar 

  54. Park PA, Liu W, Strkson JM, Cook ME, Pariza MW (1997) Effect of conjugated linoleic acid on body composition in mice. Lipids 32:853–858

    Article  PubMed  CAS  Google Scholar 

  55. Yu Y, Correll PH, Vanden Heuvel JP (2002) Conjugated linoleic acid decreases production of pro-inflammatory products in macrophages: evidence for a PPAR gamma-dependent mechanism. Biochim Biophys Acta 1581(3):89–99

    PubMed  CAS  Google Scholar 

  56. Iwakiri Y, Sampson DA, Allen KG (2002) Suppression of cyclooxygenase-2 and inducible nitric oxide synthase expression by conjugated linoleic acid in murine macrophages. Prostaglandins Leukot Essent Fatty Acids 67(6):435–443

    Article  PubMed  CAS  Google Scholar 

  57. Rahman MM, Bhattacharya A, Banu J, Fernandes G (2007) Conjugated linoleic acid protects against age-associated bone loss in C57BL/6 female mice. J Nutr Biochem 18(7):467–474

    Article  PubMed  CAS  Google Scholar 

  58. Kraemer RR, Kilgore JL, Kraemer GR, Castracane VD (1992) Growth hormone, IGF-I, and testosterone responses to resistive exercise. Med Sci Sports Exerc 24(12):1346–1352

    PubMed  CAS  Google Scholar 

  59. Roemmich JN, Rogol AD (1997) Exercise and growth hormone: does one affect the other? J Pediatr 131(1 pt 2):S75–S80

    PubMed  CAS  Google Scholar 

  60. Landt M, Lawson GM, Helgeson JM, Davila-Roman VG, Ladenson JH, Jaffe AS, Hickner RC (1997) Prolonged exercise decreases serum leptin concentrations. Metabolism 46(10):1109–1112

    Article  PubMed  CAS  Google Scholar 

  61. Leal-Cerro A, Garcia-Luna PP, Astorga R, Parejo J, Peino R, Dieguez C, Casanueva FF (1998) Serum leptin levels in male marathon athletes before and after the marathon run. J Clin Endocrinol Metab 83(7):2376–2379

    Article  PubMed  CAS  Google Scholar 

  62. Tsuboyama-Kasaoka N, Takahashi M, Tanemura K, Kim HJ, Tange T, Okuyama H, Kasai M, Ikemoto S, Ezaki O (2000) Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice. Diabetes 49(9): 1534–1542

    Article  PubMed  CAS  Google Scholar 

  63. Tsuboyama-Kasaoka N, Miyazaki H, Kasaoka S, Ezaki O (2003) Increasing the amount of fat in a conjugated linoleic acid-supplemented diet reduces lipodystrophy in mice. J Nutr 133(6): 1793–1799

    PubMed  CAS  Google Scholar 

  64. Yanagita T, Wang YM, Nagao K, Ujino Y, Inoue N (2005) Conjugated linoleic acid-induced fatty liver can be attenuated by combination with docosahexaenoic acid in C57BL/6N mice. J Agric Food Chem 53(24):9629–9633

    Article  PubMed  CAS  Google Scholar 

  65. Bergamo P, Luongo D, Maurano F, Mazzarella G, Stefanile R, Rossi M (2006) Conjugated linoleic acid enhances glutathione synthesis and attenuates pathological signs in MRL/lpr mice. J Lipid Res 47(11):2382–2391

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Fernandes.

About this article

Cite this article

Banu, J., Bhattacharya, A., Rahman, M. et al. Beneficial effects of conjugated linoleic acid and exercise on bone of middle-aged female mice. J Bone Miner Metab 26, 436–445 (2008). https://doi.org/10.1007/s00774-008-0863-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-008-0863-3

Key words

Navigation