Skip to main content

Advertisement

Log in

Alfacalcidol treatment increases bone mass from anticatabolic and anabolic effects on cancellous and cortical bone in intact female rats

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

It has been reported that alfacalcidol had an anticatabolic and anabolic effect on bone in ovariectomized and aged male rat models, but this has not been tested on intact female rats. The current study was to determine the effects of alfacalcidol on cancellous and cortical bone in intact female rats with or without exercise. Seventy-four, 8.5-month-old, intact female rats were orally treated with 0, 0.005, 0.025, 0.05, or 0.1 μg/kg alfacalcidol alone or in combination with raised cage (RC) exercise for 3 months. In vivo peripheral quantitative computerized tomography (pQCT) of the proximal tibial metaphyses (PTM) and ex vivo histomorphometric analyses of the PTM and tibial shaft (TX) were performed. Only the 0.1 μg alfacalcidol/kg dose proved to be anabolic. pQCT analysis showed that this dose increased total and cortical bone mineral content and density and trabecular bone mineral density. Histomorphometrically, it induced an anabolic response by increased trabecular mass and microarchitecture from stimulated cancellous bone and bone bouton formations, and suppressed bone resorption more than bone formation on the trabecular and endocortical surfaces, to produce a positive bone balance. A positive correlation between trabecular connectivity and bone bouton numbers occurred. These findings suggest alfacalcidol treatment augments bone mass by increased cancellous bone mass and improved trabecular architecture through its anticatabolic and anabolic properties in the intact adult female rat. Last, raised cage exercise alone or the combination of raised cage and alfacalcidol was no more effective than alfacalcidol alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lane NE (2006) Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol 194(suppl):S3–S11

    Article  PubMed  CAS  Google Scholar 

  2. Larijani B, Moayyeri A, Keshtkar AA, Hossein-Nezhad A, Soltani A, Bahrami A, Omrani GH, Rajabian R, Nabipour I (2006) Peak bone mass of Iranian population: the Iranian Multicenter Osteoporosis study. J Clin Densitom 9:367–374

    Article  PubMed  Google Scholar 

  3. Fujiwara S (2005) Epidemiology of osteoporosis. Clin Calcium 15:577–582

    PubMed  Google Scholar 

  4. Shiraishi A, Takeda S, Masaki T, Higuchi Y, Uchiyama Y, Kubodera N, Sato K, Ikeda K, Nakamura T, Matsumoto T, Ogata E (2000) Alfacalcidol inhibits bone resorption and stimulates formation in an ovariectomized rat model of osteoporosis: distinct actions from estrogen. J Bone Miner Res 15:770–779

    Article  PubMed  CAS  Google Scholar 

  5. Shiraishi A, Higashi S, Ohkawa H, Kubodera N, Hirasawa T, Ezawa I, Ikeda K, Ogata E (1999) The advantage of alfacalcidol over vitamin D in the treatment of osteoporosis. Calcif Tissue Int 65:311–316

    Article  PubMed  CAS  Google Scholar 

  6. Li M, Li Y, Healy DR, Simmons HA, Ke HZ, Thompson DD (2003) Alfacalcidol restores cancellous bone in ovariectomized rats. J Musculoskelet Neuronal Interact 3:39–46

    PubMed  CAS  Google Scholar 

  7. Weber K, Kaschig C, Erben RG (2004) 1α-Hydroxyvitamin D2 and 1α-hydroxyvitamin D3 have anabolic effects on cortical bone, but induce intracortical remodeling at toxic doses in ovariectomized rats. Bone (NY) 3535:704–71

    CAS  Google Scholar 

  8. Weber K, Goldberg M, Stangassinger M, Erben RG (2001) 1α-Hydroxyvitamin D2 is less toxic but not bone selective relative to 1α-hydroxyvitamin D3 in ovariectomized rats. J Bone Miner Res 16:639–65

    Article  PubMed  CAS  Google Scholar 

  9. Li M, Healy DR, Li Y, Simmons HA, Su M, Jee WSS, Shen VW, Thompson DD (2004) Alfacalcidol prevents age-related bone loss and causes an atypical pattern of bone formation in aged male rats. J Musculoskelet Neuronal Interact 4:22–32

    PubMed  Google Scholar 

  10. Erben RG, Brown S, Stangassinger M (1998) Therapeutic efficacy of 1α, 25-dihydroxyvitamin D3 and calcium in osteopenia ovariectomized rats: evidence for a direct anabolic effect of 1α, 25-dihydroxyvitamin D3 on bone. Endocrinology 139:4319–4328

    Article  PubMed  CAS  Google Scholar 

  11. Eastell R, Riggs BL (1997) Vitamin D and osteoporosis. In: Feldman D, Glorieux FH, Pike JW (eds) Vitamin D. Academic Press, New York, pp 695–711

    Google Scholar 

  12. Erben RG (2001) Vitamin D analogs and bone. J Musculoskelet Neuronal Interact 2:59–69

    PubMed  CAS  Google Scholar 

  13. Frost HM (1992) Perspectives: the role of changes in mechanical usage set point in the pathogenesis of osteoporosis. J Bone Miner Res 7:253–262

    PubMed  CAS  Google Scholar 

  14. Frost HM (1990) Skeleton structural adaptation to mechanical usage (SATMU). Redefining Wolff’s law: the bone modeling problem. Anat Rec 266:403–413

    Article  Google Scholar 

  15. Iwamoto J, Shimamura C, Takeda T, Abe H, Ichimura S, Sato Y, Toyama Y (2004) Effects of treadmill exercise on bone mass, bone metabolism, and calciotropic hormones in young growing rats. J Bone Miner Metab 22:26–31

    Article  PubMed  CAS  Google Scholar 

  16. Yeh JK, Liu CC, Aloia JF (1993) Additive effect of treadmill exercise and 17-estradiol replacement on prevention of tibial bone loss in adult ovariectomized rat. J Bone Miner Res 8:677–683

    PubMed  CAS  Google Scholar 

  17. Mosley JR, Lanyon LE (2002) Growth rate rather than gender determines the size of the adaptive response of the growing skeleton to mechanical strain. Bone (NY) 30:314–319

    CAS  Google Scholar 

  18. Jee WSS (2000) Anabolic agents and osteoporosis: quo vadis. J Musculoskelet Neuronal Interact 1:107–111

    PubMed  CAS  Google Scholar 

  19. Kalu DN, Banu J, Wang L (2000) How cancellous and cortical bones adapt to loading and growth hormone. J Musculoskelet Neuronal Interact 1:19–23

    PubMed  CAS  Google Scholar 

  20. Jee WSS, Tian XY (2005) The benefit of combining nonmechanical agents with mechanical loading: a perspective based on the Utah Paradigm of skeletal physiology. J Musculoskelet Neuronal Interact 5:110–118

    PubMed  CAS  Google Scholar 

  21. Yao W, Jee WSS, Chen JL, Li CY, Frost HM (2001) A novel method to “exercise” rats: making rats rise to erect bipedal stance for feeding-raised cage model. J Musculoskelet Neuronal Interact 1:241–247

    PubMed  CAS  Google Scholar 

  22. Yao W, Jee WSS, Chen JL, Liu HY, Tam CS, Cui L, Zhou H, Setterberg RB, Frost HM (2000) Making rats rise to erect bipedal stance for feeding partially prevented orchidectomy-induced bone loss and added bone to intact rats. J Bone Miner Res 15:1158–1168

    Article  PubMed  CAS  Google Scholar 

  23. Yao W, Jee WSS, Chen JL, Tam CS, Setterberg RB, Frost HM (2000) Erect bipedal stance exercise partially prevents orchidectomy-induced bone loss in the lumbar vertebrae of rats. Bone (NY) 27:667–675

    CAS  Google Scholar 

  24. Chen JL, Yao W, Frost HM, Li CY, Setterberg RB, Jee WSS (2001) Bipedal stance exercise enhances antiresorption effects of estrogen and counteracts its inhibitory effect on bone formation in sham and ovariectomized rats. Bone (NY) 29:126–133

    CAS  Google Scholar 

  25. Li CY, Jee WSS, Chen JL, Mo A, Setterberg RB, Su M, Tian XY, Ma YF, Yao W (2003) Estrogen and “exercise” have a synergistic effect in preventing bone loss in the lumbar vertebra and femoral neck of the ovariectomized rat. Calcif Tissue Int 72:42–49

    Article  PubMed  CAS  Google Scholar 

  26. Mo A, Yao W, Li C, Tian X, Su M, Ling Y, Zhang Q, Setterberg RB, Jee WSS (2002) Bipedal stance exercise and prostaglandin E2 (PGE2) and its synergistic effect in increasing bone mass and in lowering the PGE2 dose required to prevent ovariectomized-induced cancellous bone loss in aged rats. Bone (NY) 31:402–406

    CAS  Google Scholar 

  27. Shiraishi A, Higashi S, Masaki T, Saito M, Ito M, Ikeda S, Nakamura T (2002) A comparison of Alfacalcidol and Menatetrenone for the treatment of bone loss in an ovariectomized rat model of osteoporosis. Calcif Tissue Int 71:69–79

    Article  PubMed  CAS  Google Scholar 

  28. Compston JE, Mellish RWE, Croucher P, Newcombe R (1989) Structural mechanisms of trabecular bone loss in man. Bone Miner 6:339–350

    Article  PubMed  CAS  Google Scholar 

  29. Tang LY, Jee WSS, Ke HZ, Kimmel DB (1992) Restoring and maintaining bone in osteopenic female rat skeleton: I. Changes in bone mass and structure. J Bone Miner Res 7:1093–1104

    Article  PubMed  CAS  Google Scholar 

  30. Riggs BL, Parfitt AM (2004) Drugs used to treat osteoporosis: the critical need for a uniform nomenclature based on their action on bone remodeling. J Bone Miner Res 20:177–184

    Article  PubMed  CAS  Google Scholar 

  31. Jee WSS, Li XJ (1989) Adaptation of cancellous bone to overloading in the adult rat: A single photon absorptiometry and histomorphometry study. Anat Rec 227:418–426

    Article  Google Scholar 

  32. Li XJ, Jee WSS, Ke HZ, Mori S, Akamine T (1991) Age-related changes of cancellous and cortical bone histomorphometry in female Sprague-Dawley rats. Cells Materials Suppl 1:25–35

    Google Scholar 

  33. Hauge E, Mosekilde LE, Melsen F (1999) Missing observations in bone histomorphometry on osteoporosis: implications and suggestions for an approach. Bone (NY) 25:389–395

    CAS  Google Scholar 

  34. Parfitt AM (2002) Recent contributions of iliac bone histomorphometry to understanding the anabolic effect of parathyroid hormone. BoneKEy-Osteovision 1:2002017

    Google Scholar 

  35. Ma YF, Donley W, Eriksen EF (2003) Characteristics of modeling and remodeling osteons after teriparatide treatment. Bone 32: S225

    Google Scholar 

  36. Kobayashi S, Takahashi HE, Ito A, Santo N, Nawata M, Horiuchi H, Ohta H, Ito A, Iorio R, Yamamoto N, Takaoka K (2003) Trabecular minimodeling in human iliac bone. Bone (NY) 32:163–169

    CAS  Google Scholar 

  37. Lindsay R, Cosman F, Zhou H, Bostrom MP, Shen VW, Cruz JD, Nieves JW, Dempster DW (2006) A novel tetracycline labeling schedule for longitudinal evaluation of the short-term effects of anabolic therapy with a single iliac crest bone biopsy: early actions of Teriparatide. J Bone Miner Res 21:366–373

    Article  PubMed  CAS  Google Scholar 

  38. Ma YL, Zeng QQ, Donley DW, Ste-Marie LG, Gallagher JC, Dalsky GP, Marcus R, Eriksen EF (2006) Teriparatide increase bone formation in modeling and remodeling osteons and enhances IGF-II immunoreactivity in postmenopausal women with osteoporosis. J Bone Miner Res 21:855–864

    Article  PubMed  CAS  Google Scholar 

  39. Chen HY, Tian XY, Liu XQ, Setterberg RB, M. Li M, Jee WSS (2008) Alfacalcidol stimulated focal bone formation on the cancellous surface and increased bone formation on the periosteal surface at the lumbar vertebra of adult female rats. Calcif Tissue Int 82: 127–136

    Article  PubMed  CAS  Google Scholar 

  40. Saxon LK, Turner CH (2006) Low-dose estrogen treatment suppresses periosteal bone formation in response to mechanical loading. Bone (NY) 39:1261–1267

    CAS  Google Scholar 

  41. Erben RG (2000) Skeletal effects of androgen withdrawal. J Musculoskelet Neuronal Interact 1:223–233

    Google Scholar 

  42. Runge M, Schacht E (2005) Multifactorial pathogenesis of falls as a basis for multifactorial intervention. J Musculoskelet Neuronal Interact 5:127–134

    PubMed  CAS  Google Scholar 

  43. Schacht E, Richy F, J-Y Reginster (2005) The therapeutic effects of alfacalcidol on bone strength, muscle metabolism and prevention of falls and fractures. J Musculosket Neuronal Interact 5:273–284

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Webster S. Jee.

About this article

Cite this article

Liu, X.Q., Chen, H.Y., Tian, X.Y. et al. Alfacalcidol treatment increases bone mass from anticatabolic and anabolic effects on cancellous and cortical bone in intact female rats. J Bone Miner Metab 26, 425–435 (2008). https://doi.org/10.1007/s00774-008-0854-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-008-0854-4

Key words

Navigation