Skip to main content

Advertisement

Log in

Stimulating parathyroid cell proliferation and PTH release with phosphate in organ cultures obtained from patients with primary and secondary hyperparathyroidism for a prolonged period

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The pathogenesis of primary hyperparathyroidism (I°-HPT) and secondary hyperparathyroidism (II°-HPT) remains to be elucidated. To characterize their pathophysiology, we investigated the effects of calcium and phosphate on cell proliferation and PTH release in an organ culture of parathyroid tissues. Dissected parathyroid tissues obtained from patients with I°-HPT (adenoma) or II°-HPT (nodular hyperplasia) were precultured on a collagen-coated membrane for 1–4 week. After changing the medium for one containing various concentrations of phosphate, PTH release and [3H]thymidine incorporation were studied. In contrast to dispersed parathyroid cells cultured in a monolayer, calcium decreased PTH release in a concentration-dependent manner in parathyroid tissues. Furthermore, when parathyroid tissues obtained from II°-HPT were precultured for 1–4 weeks, PTH release and parathyroid cell proliferation were significantly increased in high-phosphate medium. These phosphate effects were also observed to a lesser extent in parathyroid tissues obtained from I°-HPT, but there was no significant difference between I°-HPT and II°-HPT. Microarray analyses revealed that mRNA levels of PTH, CaSR, and VDR were well preserved, and several growth factors (e.g. TGF-beta1-induced protein) were abundantly expressed in II°-HPT. Using organ cultures of hyperparathyroid tissues, in which PTH release and CaSR are well preserved for a prolonged period, we have demonstrated that phosphate stimulates parathyroid cell proliferation not only in II°-HPT but also in I°-HPT. Although the mechanism responsible for phosphate-induced cell proliferation remains to be elucidated, our in vitro findings suggest that both parathyroid tissues preserve to some extent a physiological response system to hyperphosphatemia as observed in normal parathyroid cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Elder G (2002) Pathophysiology and recent advances in the management of renal osteodystrophy. J Bone Miner Res 17:2094–2105

    Article  PubMed  CAS  Google Scholar 

  2. Rodriguez M, Nemeth E, Martin D (2005) The calcium-sensing receptor: a key factor in the pathogenesis of secondary hyperparathyroidism. Am J Physiol Renal Physiol 288:F253–F264

    Article  PubMed  CAS  Google Scholar 

  3. Slatopolsky E, Brown A, Dusso A (2005) Calcium, phosphorus and vitamin D disorders in uremia. Contrib Nephrol 149:261–271

    Article  PubMed  CAS  Google Scholar 

  4. Silver J, Levi R (2005) Cellular and molecular mechanisms of secondary hyperparathyroidism. Clin Nephrol 63:119–126

    PubMed  CAS  Google Scholar 

  5. Lee MJ, Roth SI (1975) Effect of calcium and magnesium on deoxyribonucleic acid synthesis in rat parathyroid glands in vitro. Lab Invest 33:72–79

    PubMed  CAS  Google Scholar 

  6. Slatopolsky E, Finch J, Denda M, Ritter C, Zhong M, Dusso A, MacDonald PN, Brown AJ (1996) Phosphorus restriction prevents parathyroid gland growth. High phosphorus directly stimulates PTH secretion in vitro. J Clin Invest 97:2534–2540

    Article  PubMed  CAS  Google Scholar 

  7. Roussanne MC, Lieberherr M, Souberbielle JC, Sarfati E, Drueke T, Bourdeau A (2001) Human parathyroid cell proliferation in response to calcium, NPS R-467, calcitriol and phosphate. Eur J Clin Invest 31:610–616

    Article  PubMed  CAS  Google Scholar 

  8. Nielsen PK, Feldt-Rasmussen U, Olgaard KA (1996) Direct effect in vitro of phosphate on PTH release from bovine parathyroid tissue slices but not from dispersed parathyroid cells. Nephrol Dial Transplant 11:1762–1768

    PubMed  CAS  Google Scholar 

  9. Almaden Y, Canalejo A, Hernandez A, Ballesteros E, Garcia-Navarro S, Torres A, Rodriguez M (1996) Direct effect of phosphorus on PTH secretion from whole rat parathyroid glands in vitro. J Bone Miner Res 11:970–976

    Article  PubMed  CAS  Google Scholar 

  10. Almaden Y, Hernandez A, Torregrosa V, Canalejo A, Sabate L, Fernandez Cruz L, Campistol JM, Torres A, Rodriguez M (1998) High phosphate level directly stimulates parathyroid hormone secretion and synthesis by human parathyroid tissue in vitro. J Am Soc Nephrol 9:1845–1852

    PubMed  CAS  Google Scholar 

  11. Roussanne MC, Gogusev J, Hory B, Duchambon P, Souberbielle JC, Nabarra B, Pierrat D, Sarfati E, Drueke T, Bourdeau A (1998) Persistence of Ca2+-sensing receptor expression in functionally active, long-term human parathyroid cell cultures. J Bone Miner Res 13:354–362

    Article  PubMed  CAS  Google Scholar 

  12. Liu W, Ridefelt P, Akerstrom G, Hellman P (2001) Differentiation of human parathyroid cells in culture. J Endocrinol 168:417–425

    Article  PubMed  CAS  Google Scholar 

  13. Mithal A, Kifor O, Kifor I, Vassilev P, Butters R, Krapcho K, Simin R, Fuller F, Hebert SC, Brown EM (1995) The reduced responsiveness of cultured bovine parathyroid cells to extracellular Ca2+ is associated with marked reduction in the expression of extracellular Ca(2+)-sensing receptor messenger ribonucleic acid and protein. Endocrinology 136:3087–3092

    Article  PubMed  CAS  Google Scholar 

  14. Sato K, Obara T, Yamazaki K, Kanbe M, Nakajima K, Yamada A, Yanagisawa T, Kato Y, Nishikawa T, Takano K (2001) Somatic mutations of the MEN1 gene and microsatellite instability in tertiary hyperparathyroidism occurring during high phosphate therapy for acquired, hypophosphatemic osteomalacia. J Clin Endocrinol Metab 86:5564–5571

    Article  PubMed  CAS  Google Scholar 

  15. Sato K, Nakajima K, Takano K, Obara T (2004) Gene expression in primary and secondary hyperparathyroidism: phosphate-induced genes in human parathyroid tissue in organ culture. J Bone Miner Res 19(suppl.1):S327 (abstract #SU 511)

    Google Scholar 

  16. Sato K, Nakajima K, Takano K, Kosaka S, Obara T, Umino K, Azuma Y (2007) Phosphate stimulates greater PTH release and parathyroid cell proliferation in organ culture of parathyroid tissue from patients wit secondary hyperparathyroidism than with primary hyperparathyroidism: microarray analyses of phosphate-induced genes. J Bone Miner Res 22(suppl.1):S397 (abstract #W141)

    Google Scholar 

  17. Yamada E, Yamazaki K, Takano K, Obara T, Sato K (2006) Iodide inhibits vascular endothelial growth factor (VEGF)-A expression in cultured human thyroid follicles: a microarray search for effects of TSH and iodide on angiogenesis factors. Thyroid 16:545–554

    Article  PubMed  CAS  Google Scholar 

  18. Yamazaki K, Suzuki K, Yamada E, Yamada T, Takeshita F, Matsumoto M, Mitsuhashi T, Obara T, Takano K, Sato K (2007) Suppression of iodide uptake and thyroid hormone synthesis with stimulation of type I interferon system by double-stranded RNA (dsRNA) in cultured human thyroid follicles. Endocrinology 148:3226–3235

    Article  PubMed  CAS  Google Scholar 

  19. Yamazaki K, Mitsuhashi T, Yamada E, Yamada T, Kosaka S, Takano K, Obara T, Sato K (2007) Amiodarone reversibly decreases sodium-iodide symporter mRNA expression at therapeutic concentrations and induces antioxidant responses at supraphysiological concentrations in cultured human thyroid follicles. Thyroid 17:1189–1200

    Article  PubMed  CAS  Google Scholar 

  20. SAS Institute (1989) SAS/STAT User’s guide, version 6, fourth edition, volume1 and volume 2. SAS Institute, Cary

  21. Oka T, Yoshioka T, Shrestha GR, Koide T, Sonoda T, Hosokawa S, Onoe K, Sakurai M (1988) Immunohistochemical study of nodular hyperplastic parathyroid glands in patients with secondary hyperparathyroidism. Virchows Arch A Pathol Anat Histopathol 413:53–360

    Article  PubMed  CAS  Google Scholar 

  22. Cetani F, Picone A, Cerrai P, Vignali E, Borsari S, Pardi E, Viacava P, Naccarato AG, Miccoli P, Kifor O, Brown EM, Pinchera A, Marcocci C (2000) Parathyroid expression of calcium-sensing receptor protein and in vivo parathyroid hormone-Ca(2+) set-point in patients with primary hyperparathyroidism. J Clin Endocrinol Metab 85:4789–4794

    Article  PubMed  CAS  Google Scholar 

  23. Yano S, Sugimoto T, Tsukamoto T, Chihara K, Kobayashi A, Kitazawa S, Maeda S, Kitazawa R (2000) Association of decreased calcium-sensing receptor expression with proliferation of parathyroid cells in secondary hyperparathyroidism. Kidney Int 58:1980–1986

    Article  PubMed  CAS  Google Scholar 

  24. Imura A, Tsuji Y, Murata M, Maeda R, Kubota K, Iwano A, Obuse C, Togashi K, Tominaga M, Kita N, Tomiyama K, Iijima J, Nabeshima Y, Fujioka M, Asato R, Tanaka S, Kojima K, Ito J, Nozaki K, Hashimoto N, Ito T, Nishio T, Uchiyama T, Fujimori T, Nabeshima Y (2007) alpha-Klotho as a regulator of calcium homeostasis. Science 316(5831):1615–1618

    Article  PubMed  CAS  Google Scholar 

  25. Fukumoto S (2008) Physiological regulation and disorders of phosphate metabolism— pivotal role of fibroblast growth factor 23. Intern Med 47:337–343

    Article  PubMed  Google Scholar 

  26. Schorderet DF, Menasche M, Morand S, Bonnel S, Büchillier V, Marchant D, Auderset K, Bonny C, Abitbol M, Munier FL (2000) Genomic characterization and embryonic expression of the mouse Bigh3 (Tgfbi) gene. Biochem Biophys Res Commun 274:267–274

    Article  PubMed  CAS  Google Scholar 

  27. Hibi Y, Kambe F, Tominaga Y, Mizuno Y, Kobayashi H, Iwase K, Imai T, Seo H (2006) Up-regulation of the gene encoding protein kinase A type I alpha regulatory subunit in nodular hyperplasia of parathyroid glands in patients with chronic renal failure. J Clin Endocrinol Metab 91:563–568

    Article  PubMed  CAS  Google Scholar 

  28. Brown EM, MacLeod RJ (2001) Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev 81:239–297

    PubMed  CAS  Google Scholar 

  29. Fukuda N, Tanaka H, Tominaga Y, Fukagawa M, Kurokawa K, Seino Y (1993) Decreased 1, 25-dihydroxyvitamin D3 receptor density is associated with a more severe form of parathyroid hyperplasia in chronic uremic patients. J Clin Invest 92:1436–1443

    Article  PubMed  CAS  Google Scholar 

  30. Tomioka H, Morita K, Hasegawa S, Omura K (2006) Gene expression analysis by cDNA microarray in oral squamous cell carcinoma. J Oral Pathol Med 35:206–211

    Article  PubMed  CAS  Google Scholar 

  31. Hourihan RN, O’Sullivan GC, Morgan JG (2003) Transcriptional gene expression profiles of oesophageal adenocarcinoma and normal oesophageal tissues. Anticancer Res 23(1A):161–165

    PubMed  CAS  Google Scholar 

  32. Schneider D, Kleeff J, Berberat PO, Zhu Z, Korc M, Friess H, Buchler MW (2002) Induction and expression of betaig-h3 in pancreatic cancer cells. Biochim Biophys Acta 1588:1–6

    PubMed  CAS  Google Scholar 

  33. Schwab K, Patterson LT, Aronow BJ, Luckas R, Liang HC, Potter SS (2003) A catalogue of gene expression in the developing kidney. Kidney Int 64:1588–1604

    Article  PubMed  CAS  Google Scholar 

  34. Turner HE, Harris AL, Melmed S, Wass JA (2003) Angiogenesis in endocrine tumors. Endocr Rev 24:600–632

    Article  PubMed  CAS  Google Scholar 

  35. Garcia de la Torre N, Buley I, Wass JAH, Jackson DG, Turner HE (2004) Angiogenesis and lymphangiogenesis in parathyroid proliferative lesions. J Clin Endocrinol Metab 89:2890–2896

    Article  PubMed  CAS  Google Scholar 

  36. Lazzris AC, Tsleni-Balafouta S, Papathomas T, Brousalis T, Thomopoulou G, Agrogiannis G, Patsouris ES (2006) Immunohistochemical investigations of angiogenic factors in parathyroid proliferative lesions. Eur J Endocrinol 154:827–833

    Article  CAS  Google Scholar 

  37. Brown EM, Swartz SL (1985) Production of prostaglandins by dispersed cells and fragments from bovine parathyroid glands. Prostaglandins 29:35–46

    Article  PubMed  CAS  Google Scholar 

  38. White JA, Ramshaw H, Taimi M, Stangle W, Zhang AM, Everingham S, Creighton S, Tam SP, Jones G, Petkovich M (2000) Identification of the human cytochrome P450, P450RAI-2, which is predominantly expressed in the adult cerebellum and is responsible for all-trans-retinoic acid metabolism. Proc Natl Acad Sci USA 97:6403–6408

    Article  PubMed  CAS  Google Scholar 

  39. Hellman P, Lieu W, Westin G, Torma H, Akerstrom G (1999) Vitamin D and retinoids in parathyroid glands (review). Int J Mol Med 3:355–361

    PubMed  CAS  Google Scholar 

  40. Bossis I, Stratakis CA (2004) Minireview: PRKAR1A: normal and abnormal functions. Endocrinology 145:5452–5458

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan (no. 15390296, 17590967 and 20591102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanji Sato.

About this article

Cite this article

Nakajima, K., Umino, Ki., Azuma, Y. et al. Stimulating parathyroid cell proliferation and PTH release with phosphate in organ cultures obtained from patients with primary and secondary hyperparathyroidism for a prolonged period. J Bone Miner Metab 27, 224–233 (2009). https://doi.org/10.1007/s00774-008-0032-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-008-0032-8

Keywords

Navigation