Skip to main content

Advertisement

Log in

Vicious cycle between myeloma cell binding to bone marrow stromal cells via VLA-4–VCAM-1 adhesion and macrophage inflammatory protein-1α and MIP-1β production

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Multiple myeloma (MM) cell adhesion to stromal cells via very late antigen (VLA)-4 and vascular cell adhesion molecule (VCAM)-1 interaction causes enhanced secretion of osteoclastogenic activity by MM cells. We have reported that MM cell-derived macrophage inflammatory protein (MIP)-1α and MIP-1β are responsible for most of the osteoclastogenic activity in MM. Thus, adhesion-mediated osteoclastogenesis may be caused by enhanced production of MIP-1 via VLA-4–VCAM-1 interaction. The present study was undertaken to clarify whether MM cell-derived MIP-1 plays a role in VLA-4–VCAM-1 adhesion-mediated osteoclastogenesis. Adhesion of MM cells to VCAM-1 upregulated MIP-1α and MIP-1β production from MM cells and enhanced production of osteoclastogenic activity by MM cells. Blockade of MIP-1α and MIP-1β actions not only abrogated elaboration of osteoclastogenic activity, but also suppressed spontaneous MM cell adhesion to VCAM-1. These results demonstrate that MM cell adhesion to VCAM-1 upregulates MIP-1 production by MM cells to cause enhancement of osteoclastogenesis. In addition, the results suggest that the increased production of MIP-1 further enhances MM cell binding to stromal cells via stimulation of VLA-4–VCAM-1 adhesion, forming a “vicious cycle” between MM cell adhesion to stromal cells and MIP-1 production via VLA-4–VCAM-1 interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Choi SJ, Cruz JC, Craig F, Chung H, Devlin RD, Roodman GD, Alsina M (2000) Macrophage inflammatory protein 1-alpha is a potential osteoclast stimulatory factor in multiple myeloma. Blood 96:671–675

    PubMed  CAS  Google Scholar 

  2. Abe M, Hiura K, Wilde J, Moriyama K, Hashimoto T, Ozaki S, Wakatsuki S, Kosaka M, Kido S, Inoue D, Matsumoto T (2002) Role for macrophage inflammatory protein (MIP)-1alpha and MIP-1beta in the development of osteolytic lesions in multiple myeloma. Blood 100:2195–2202

    PubMed  CAS  Google Scholar 

  3. Hashimoto T, Abe M, Oshima T, Shibata H, Ozaki S, Inoue D, Matsumoto T (2004) Ability of myeloma cells to secrete macrophage inflammatory protein (MIP)-1alpha and MIP-1beta correlates with lytic bone lesions in patients with multiple myeloma. Br J Haematol 125:38–41

    Article  PubMed  CAS  Google Scholar 

  4. Caligaris-Cappio F, Bergui L, Gregoretti MG, Gaidano G, Gaboli M, Schena M, Zallone AZ, Marchisio PC (1991) Role of bone marrow stromal cells in the growth of human multiple myeloma. Blood 77:2688–2693

    PubMed  CAS  Google Scholar 

  5. Roodman GD (2002) Role of the bone marrow microenvironment in multiple myeloma. J Bone Miner Res 17:1921–1925

    Article  PubMed  CAS  Google Scholar 

  6. Nefedova Y, Landowski TH, Dalton WS (2003) Bone marrow stromal-derived soluble factors and direct cell contact contribute to de novo drug resistance of myeloma cells by distinct mechanisms. Leukemia 17:1175–1182

    Article  PubMed  CAS  Google Scholar 

  7. De Raeve HR, Vanderkerken K (2005) The role of the bone marrow microenvironment in multiple myeloma. Histol Histopathol 20:1227–1250

    PubMed  Google Scholar 

  8. Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS (1999) Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 93:1658–1667

    PubMed  CAS  Google Scholar 

  9. Dalton WS, Hazlehurst L, Shain K, Landowski T, Alsina M (2004) Targeting the bone marrow microenvironment in hematologic malignancies. Semin Hematol 41:1–5

    Article  PubMed  CAS  Google Scholar 

  10. Faid L, Van Riet I, De Waele M, Facon T, Schots R, Lacor P, Van Camp B (1996) Adhesive interactions between tumour cells and bone marrow stromal elements in human multiple myeloma. Eur J Haematol 57:349–358

    Article  PubMed  CAS  Google Scholar 

  11. Sanz-Rodriguez F, Ruiz-Velasco N, Pascual-Salcedo D, Teixido J (1999) Characterization of VLA-4-dependent myeloma cell adhesion to fibronectin and VCAM-1. Br J Haematol 107:825–834

    Article  PubMed  CAS  Google Scholar 

  12. Hideshima T, Chauhan D, Podar K, Schlossman RL, Richardson P, Anderson KC (2001) Novel therapies targeting the myeloma cell and its bone marrow microenvironment. Semin Oncol 28:607–612

    Article  PubMed  CAS  Google Scholar 

  13. Michigami T, Shimizu N, Williams PJ, Niewolna M, Dallas SL, Mundy GR, Yoneda T (2000) Cell-cell contact between marrow stromal cells and myeloma cells via VCAM-1 and alpha(4)beta(1)-integrin enhances production of osteoclast-stimulating activity. Blood 96:1953–1960

    PubMed  CAS  Google Scholar 

  14. Mori Y, Shimizu N, Dallas M, Niewolna M, Story B, Williams PJ, Mundy GR, Yoneda T (2004) Anti-alpha4 integrin antibody suppresses the development of multiple myeloma and associated osteoclastic osteolysis. Blood 104:2149–2154

    Article  PubMed  CAS  Google Scholar 

  15. Rice GE, Munro JM, Bevilacqua MP (1990) Inducible cell adhesion molecule 110 (INCAM-110) is an endothelial receptor for lymphocytes. A CD11/CD18-independent adhesion mechanism. J Exp Med 171:1369–1374

    Article  PubMed  CAS  Google Scholar 

  16. Goto T, Kennel SJ, Abe M, Takishita M, Kosaka M, Solomon A, Saito S (1994) A novel membrane antigen selectively expressed on terminally differentiated human B cells. Blood 84:1922–1930

    PubMed  CAS  Google Scholar 

  17. Takada Y, Kusuda M, Hiura K, Sato T, Mochizuki H, Nagao Y, Tomura M, Yahiro M, Hakeda Y, Kawashima H (1992) A simple method to assess osteoclast-mediated bone resorption using unfractionated bone cells. Bone Miner 17:347–359

    Article  PubMed  CAS  Google Scholar 

  18. Alsina M, Boyce B, Devlin RD, Anderson JL, Craig F, Mundy GR, Roodman GD (1996) Development of an in vivo model of human multiple myeloma bone disease. Blood 87:1495–1501

    PubMed  CAS  Google Scholar 

  19. Choi SJ, Oba Y, Gazitt Y, Alsina M, Cruz J, Anderson J, Roodman GD (2001) Antisense inhibition of macrophage inflammatory protein 1-alpha blocks bone destruction in a model of myeloma bone disease. J Clin Invest 108:1833–1841

    PubMed  CAS  Google Scholar 

  20. Tanaka Y, Adams DH, Hubscher S, Hirano H, Siebenlist U, Shaw S (1993) T-cell adhesion induced by proteoglycan-immobilized cytokine MIP-1 beta. Nature 361:79–82

    Article  PubMed  CAS  Google Scholar 

  21. Tanaka Y, Mine S, Figdor CG, Wake A, Hirano H, Tsukada J, Aso M, Fujii K, Saito K, van Kooyk Y, Eto S (1998) Constitutive chemokine production results in activation of leukocyte function-associated antigen-1 on adult T-cell leukemia cells. Blood 91:3909–3919

    PubMed  CAS  Google Scholar 

  22. Tanaka Y, Mine S, Hanagiri T, Hiraga T, Morimoto I, Figdor CG, van Kooyk Y, Ozawa H, Nakamura T, Yasumoto K, Eto S (1998) Constitutive up-regulation of integrin-mediated adhesion of tumor-infiltrating lymphocytes to osteoblasts and bone marrow-derived stromal cells. Cancer Res 58:4138–4145

    PubMed  CAS  Google Scholar 

  23. Kinashi T (2005) Intracellular signalling controlling integrin activation in lymphocytes. Nat Rev Immunol 5:546–559

    Article  PubMed  CAS  Google Scholar 

  24. Miyamoto A, Kunisada T, Hemmi H, Yamane T, Yasuda H, Miyake K, Yamazaki H, Hayashi SI (1998) Establishment and characterization of an immortal macrophage-like cell line inducible to differentiate to osteoclasts. Biochem Biophys Res Commun 242:703–709

    Article  PubMed  CAS  Google Scholar 

  25. Nakagawa N, Kinosaki M, Yamaguchi K, Shima N, Yasuda H, Yano K, Morinaga T, Higashio K (1998) RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochem Biophys Res Commun 253:395–400

    Article  PubMed  CAS  Google Scholar 

  26. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS et al (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    Article  PubMed  CAS  Google Scholar 

  27. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323

    Article  PubMed  CAS  Google Scholar 

  28. Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, Daro E, Smith J, Tometsko ME, Maliszewski CR, Armstrong A, Shen V, Bain S, Cosman D, Anderson D, Morrissey PJ, Peschon JJ, Schuh J (1999) RANK is essential for osteoclast and lymph node development. Genes Dev 13:2412–2424

    Article  PubMed  CAS  Google Scholar 

  29. Pearse RN, Sordillo EM, Yaccoby S, Wong BR, Liau DF, Colman N, Michaeli J, Epstein J, Choi Y (2001) Multiple myeloma disrupts the TRANCE/osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression. Proc Natl Acad Sci USA 98:11581–11586

    Article  PubMed  CAS  Google Scholar 

  30. Giuliani N, Bataille R, Mancini C, Lazzaretti M, Barille S (2001) Myeloma cells induce imbalance in the osteoprotegerin/osteoprotegerin ligand system in the human bone marrow environment. Blood 98:3527–3533

    Article  PubMed  CAS  Google Scholar 

  31. Sezer O, Heider U, Zavrski I, Kuhne CA, Hofbauer LC (2003) RANK ligand and osteoprotegerin in myeloma bone disease. Blood 101:2094–2098

    Article  PubMed  CAS  Google Scholar 

  32. Van de Broek I, Leleu X, Schots R, Facon T, Vanderkerken K, Van Camp B, Van Riet I (2006) Clinical significance of chemokine receptor (CCR1, CCR2 and CXCR4) expression in human myeloma cells: the association with disease activity and survival. Haematologica 91:200–206

    PubMed  Google Scholar 

  33. Yaccoby S, Wezeman MJ, Henderson A, Cottler-Fox M, Yi Q, Barlogie B, Epstein J (2004) Cancer and the microenvironment: myeloma-osteoclast interactions as a model. Cancer Res 64:2016–2023

    Article  PubMed  CAS  Google Scholar 

  34. Abe M, Hiura K, Wilde J, Shioyasono A, Moriyama K, Hashimoto T, Kido S, Oshima T, Shibata H, Ozaki S, Inoue D, Matsumoto T (2004) Osteoclasts enhance myeloma cell growth and survival via cell-cell contact: a vicious cycle between bone destruction and myeloma expansion. Blood 104:2484–2491

    Article  PubMed  CAS  Google Scholar 

  35. Abe M, Kido S, Hiasa M, Nakano A, Oda A, Amou H, Matsumoto T (2006) BAFF and APRIL as osteoclast-derived survival factors for myeloma cells: a rationale for TACI-Fc treatment in patients with multiple myeloma. Leukemia 20:1313–1315

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. Hiroe Amou, Ms. Asuka Oda, and Dr. Masahiro Hiasa for their expert technical assistance. This work was supported in part by Grants-in-Aid for Scientific Research (A) to T. M. and (C) to M. A., and for the 21st Century Center of Excellence Program from the Ministry of Education, Culture, Science, and Sports of Japan, and a Grant-in-Aid for Cancer Research (17-16) from the Ministry of Health, Labor, and Welfare of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Abe.

About this article

Cite this article

Abe, M., Hiura, K., Ozaki, S. et al. Vicious cycle between myeloma cell binding to bone marrow stromal cells via VLA-4–VCAM-1 adhesion and macrophage inflammatory protein-1α and MIP-1β production. J Bone Miner Metab 27, 16–23 (2009). https://doi.org/10.1007/s00774-008-0012-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-008-0012-z

Keywords

Navigation