Skip to main content

Advertisement

Log in

Selective drug delivery to bone using acidic oligopeptides

  • Review Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. De Ligny CL, Gelseman WJ, Tji TG, Huigen YM, Vink HA (1990) Bone-seeking radiopharmaceuticals. Nucl Med Biol 17:161–179

    Google Scholar 

  2. Ezra A, Golomb G (2000) Administration routes and delivery systems of bisphosphonates for the treatment of bone resorption. Adv Drug Delivery Rev 42:175–195

    Article  CAS  Google Scholar 

  3. Fujisaki J, Tokunaga Y, Takahashi T, Hirose T, Shimojo F, Kagayama A, Hata T (1995) Osteotropic drug delivery system (ODDS) based on bisphosphonic prodrug. I: Synthesis and in vivo characterization of osteotropic carboxyfluorescein. J Drug Target 3:273–282

    Article  PubMed  CAS  Google Scholar 

  4. Fujisaki J, Tokunaga Y, Takahashi T, Shimojo F, Kimura S, Hata T (1998) Osteotropic drug delivery system (ODDS) based on bisphosphonic prodrug: i.v. effects of osteotropic estradiol on bone mineral density and uterine weight in ovariectomized rats. J Drug Target 5:129–138

    PubMed  CAS  Google Scholar 

  5. Uludag H, Gao T, Wohl GR, Kantoci D, Zernicke RF (2000) Bone affinity of a bisphosphonate-conjugated protein in vivo. Biotechnol Prog 16:1115–1118

    Article  PubMed  CAS  Google Scholar 

  6. Gittens SA, Bansal G, Zernicke RF, Uludag H (2005) Designing proteins for bone targeting. Adv Drug Delivery Rev 57:1011–1036

    Article  CAS  Google Scholar 

  7. Oldberg A, Franzén A, Heinegård D (1986) Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence. Proc Natl Acad Sci USA 83:8819–8823

    Article  PubMed  CAS  Google Scholar 

  8. Nagata T, Bellows CG, Kasugai S, Butler WT, Sodek J (1991) Biosynthesis of bone proteins [SPP-1 (secreted phosphoprotein-1, osteopontin), BSP (bone sialoprotein) and SPARC (osteonectin)] in association with mineralized-tissue formation by fetal-rat calvarial cells in culture. Biochem J 274:513–520

    PubMed  CAS  Google Scholar 

  9. Kasugai S, Nagata T, Sodek J (1992) Temporal studies on the tissue compartmentalization of bone sialoprotein (BSP), osteopontin (OPN), and SPARC protein during bone formation in vitro. J Cell Physiol 152:467–477

    Article  PubMed  CAS  Google Scholar 

  10. Sekido T, Sakura N, Higashi Y, Miya K, Nitta Y, Nomura M, Sawanishi H, Morito K, Masamune Y, Kasugai S, Yokogawa K, Miyamoto K (2001) Novel drug delivery system to bone using acidic oligopeptide; pharmacokinetic characteristics and pharmacological potential. J Drug Target 9:111–121

    Article  PubMed  CAS  Google Scholar 

  11. Kasugai S, Fujisawa R, Waki Y, Miyamoto K, Ohya K (2000) Selective drug delivery system to bone; small peptide (Asp)6 conjugation. J Bone Miner Res 15:936–943

    Article  PubMed  CAS  Google Scholar 

  12. Komm BS, Terpening CM, Benz DJ, Graeme KA, Gallegos A, Korc M, Greene GL, O’Malley BW, Haussler MR (1988) Estrogen binding, receptor mRNA, and biologic response in osteoblast-like osteosarcoma cells. Science 241:81–84

    Article  PubMed  CAS  Google Scholar 

  13. Eriksen EF, Colvard DS, Berg NJ, Graham ML, Mann KG, Spelsberg TC, Riggs BL (1988) Evidence of estrogen receptors in normal human osteoblast-like cells. Science 241:84–86

    Article  PubMed  CAS  Google Scholar 

  14. Oursler MJ, Osdoby P, Pyfferoen J, Riggs BL, Spelsberg TC (1991) Avian osteoclasts as estrogen target cells. Proc Natl Acad Sci USA 88:6613–6617

    Article  PubMed  CAS  Google Scholar 

  15. Onoe Y, Miyaura C, Ohta H, Nozawa S, Suda T (1997) Expression of estrogen receptor beta in rat bone. Endocrinology 138:4509–4512

    Article  PubMed  CAS  Google Scholar 

  16. Arts J, Kuiper GG, Janssen JM, Gustafsson JA, Löwik CW, Pols HA, van Leeuwen JP (1997) Differential expression of estrogen receptors alpha and beta mRNA during differentiation of human osteoblast SV-HFO cells. Endocrinology 138:5067–5070

    Article  PubMed  CAS  Google Scholar 

  17. Bain SD, Bailey MC, Edwards MW (1992) The anabolic effect of estrogen on endosteal bone formation in the mouse is attenuated by ovariohysterectomy: a role for the uterus in the skeletal response to estrogen? Calcif Tissue Int 51:223–228

    Article  PubMed  CAS  Google Scholar 

  18. Wronski TJ, Yen CF, Qi H, Dann LM (1993) Parathyroid hormone is more effective than estrogen or bisphosphonates for restoration of lost bone mass in ovariectomized rats. Endocrinology 132:823–831

    Article  PubMed  CAS  Google Scholar 

  19. Lindsay R, Tohme JF (1990) Estrogen treatment of patients with established postmenopausal osteoporosis. Obstet Gynecol 76:290–295

    PubMed  CAS  Google Scholar 

  20. Astedt B (1981) On the role of estrogens in endometrial carcinogenesis. Acta Obstet Gynecol Scand 106(suppl):33–35

    CAS  Google Scholar 

  21. Gambrell RD (1982) The menopause; benefits and risks of estrogen-progestogen replacement therapy. Fertil Steril 37:457–474

    PubMed  Google Scholar 

  22. Yokogawa K, Miya K, Sekido T, Higashi Y, Nomura M, Fujisawa R, Morito K, Masamune Y, Waki Y, Kasugai S, Miyamoto K (2001) Selective delivery of estradiol to bone by aspartic acid oligopeptide and its effects on ovariectomized mice. Endocrinology 142:1228–1233

    Article  PubMed  CAS  Google Scholar 

  23. Larner JM, MacLusky NJ, Hochberg RB (1985) The naturally occurring C-17 fatty acid esters of estradiol are long-acting estrogens. J Steroid Biochem 22:407–413

    Article  PubMed  CAS  Google Scholar 

  24. Larner JM, Hochberg RB (1985) The clearance and metabolism of estradiol and estradiol-17-esters in the rat. Endocrinology 117:1209–1214

    Article  PubMed  CAS  Google Scholar 

  25. Hershcopf RJ, Bradlow HL, Fishman J, Swaneck GE, Larner JM, Hochberg RB (1985) Metabolism of estradiol fatty acid esters in man. J Clin Endocrinol Metab 61:1071–1075

    PubMed  CAS  Google Scholar 

  26. Yokogawa K, Toshima K, Yamoto K, Nishioka T, Sakura N, Miyamoto K (2006) Pharmacokinetic advantage of an intranasal preparation of a novel anti-osteoporosis drug, l-Asp-hexapeptide-conjugated estradiol. Biol Pharm Bull 29:1229–1233

    Article  PubMed  CAS  Google Scholar 

  27. Dirschl DR, Almekinders LC (1993) Osteomyelitis. Common causes and treatment recommendations. Drugs 45:29–43

    Article  PubMed  CAS  Google Scholar 

  28. Mader JT, Ortiz M, Calhoun JH (1996) Update on the diagnosis and management of osteomyelitis. Clin Podiatr Med Surg 13:701–724

    PubMed  CAS  Google Scholar 

  29. Mader JT, Mohan D, Calhoun J (1997) A practical guide to the diagnosis and management of bone and joint infections. Drugs 54:253–264

    Article  PubMed  CAS  Google Scholar 

  30. Weinstein MP, Stratton CW, Hawley HB, Ackley A, Reller LB (1987) Multicenter collaborative evaluation of a standardized serum bactericidal test as a predictor of therapeutic efficacy in acute and chronic osteomyelitis. Am J Med 83:218–222

    Article  PubMed  CAS  Google Scholar 

  31. Mader JT, Cantrell JS, Calhoun J (1990) Oral ciprofloxacin compared with standard parenteral antibiotic therapy for chronic osteomyelitis in adults. J Bone Joint Surg [Am] 72:104–110

    CAS  Google Scholar 

  32. Takahashi TN, Kobayashi S, Miyamoto K (2008) Bone targeting of quinolone antibiotics conjugated with an acidic oligopeptide. Pharm Res (Epub ahead of print). doi:10.1007/s11095-008-9605-4

  33. Lewis RJ, Tsai FT, Wigley DB (1996) Molecular mechanisms of drug inhibition of DNA gyrase. Bioessays 18:661–667

    Article  PubMed  CAS  Google Scholar 

  34. Shen LL, Chu DTW (1996) Type II DNA topoisomerases as antibacterial targets. Curr Pharm Des 2:195–208

    CAS  Google Scholar 

  35. Blondeau JM (1999) Expanded activity and utility of the new fluoroquinolones; a review. Clin Ther 21:3–40

    Article  PubMed  CAS  Google Scholar 

  36. O’Donnell JA, Gelone SP (2000) Fluoroquinolones. Infect Dis Clin N Am 14:489–513

    Article  CAS  Google Scholar 

  37. Blaser J, Stone BB, Groner MC, Zinner SH (1987) Comparative study with enoxacin and netilmicin in a pharmacodynamic model to determine importance of ratio of antibiotic peak concentration to MIC for bactericidal activity and emergence of resistance. Antimicrob Agents Chemother 31:1054–1060

    PubMed  CAS  Google Scholar 

  38. Preston SL, Drusano GL, Berman AL, Fowler CL, Chow AT, Dornseif B, Reichl V, Natarajan J, Corrado M (1998) Pharmacodynamics of levofloxacin; a new paradigm for early clinical trials. JAMA 279:125–129

    Article  PubMed  CAS  Google Scholar 

  39. Whyte MP (2001) Hypophosphatasia. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The Metabolic and Molecular Bases of Inherited Disease, 8th edn. McGraw-Hill, New York, pp 5313–5329

    Google Scholar 

  40. Moss DW, Eaton RH, Smith JK, Whitby LG (1967) Association of inorganic-pyrophosphatase activity with human alkaline-phosphatase preparations. Biochem J 102:53–57

    PubMed  CAS  Google Scholar 

  41. Leone FA, Rezende LA, Ciancaglini P, Pizauro JM (1998) Allosteric modulation of pyrophosphatase activity of rat osseous plate alkaline phosphatase by magnesium ions. Int J Biochem Cell Biol 30:89–97

    Article  PubMed  CAS  Google Scholar 

  42. Anderson HC (1988) Mechanisms of pathologic calcification. Rheum Dis Clin N Am 14:303–319

    CAS  Google Scholar 

  43. Fleisch H, Russell RG, Straumann F (1966) Effect of pyrophosphate on hydroxyapatite and its implications in calcium homeostasis. Nature (Lond) 212:901–903

    Article  CAS  Google Scholar 

  44. de Jong AS, Hak TJ, van Duijn P (1980) The dynamics of calcium phosphate precipitation studied with a new polyacrylamide steady state matrix-model; influence of pyrophosphate collagen and chondroitin sulfate. Connect Tissue Res 7:73–79

    Article  PubMed  Google Scholar 

  45. Meyer JL (1984) Can biological calcification occur in the presence of pyrophosphate? Arch Biochem Biophys 231:1–8

    Article  PubMed  CAS  Google Scholar 

  46. Whyte MP, Valdes R, Ryan LM, McAlister WH (1982) Infantile hypophosphatasia; enzyme replacement therapy by intravenous infusion of alkaline phosphatase-rich plasma from patients with Paget bone disease. J Pediatr 101:379–386

    Article  PubMed  CAS  Google Scholar 

  47. Whyte MP, McAlister WH, Patton LS, Magill HL, Fallon MD, Lorentz WB, Herrod HG (1984) Enzyme replacement therapy for infantile hypophosphatasia attempted by intravenous infusions of alkaline phosphatase-rich Paget plasma; results in three additional patients. J Pediatr 105:926–933

    Article  PubMed  CAS  Google Scholar 

  48. Whyte MP, Magill HL, Fallon MD, Herrod HG (1986) Infantile hypophosphatasia; normalization of circulating bone alkaline phosphatase activity followed by skeletal remineralization. Evidence for an intact structural gene for tissue nonspecific alkaline phosphatase. J Pediatr 108:82–88

    Article  PubMed  CAS  Google Scholar 

  49. Weninger M, Stinson RA, Plenk H, Böck P, Pollak A (1989) Biochemical and morphological effects of human hepatic alkaline phosphatase in a neonate with hypophosphatasia. Acta Paediatr Scand 360:154–160

    Article  CAS  Google Scholar 

  50. Whyte MP, Landt M, Ryan LM, Mulivor RA, Henthorn PS, Fedde KN, Mahuren JD, Coburn SP (1995) Alkaline phosphatase; placental and tissue-nonspecific isoenzymes hydrolyze phosphoethanolamine, inorganic pyrophosphate, and pyridoxal 5′-phosphate. Substrate accumulation in carriers of hypophosphatasia corrects during pregnancy. J Clin Invest 95:1440–1445

    Article  PubMed  CAS  Google Scholar 

  51. Murshed M, Harmey D, Millán JL, McKee MD, Karsenty G (2005) Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone. Genes Dev 19:1093–1104

    Article  PubMed  CAS  Google Scholar 

  52. Nishioka T, Tomatsu S, Gutierrez MA, Miyamoto K, Trandafirescu GG, Lopez PL, Grubb JH, Kanai R, Kobayashi H, Yamaguchi S, Gottesman GS, Cahill R, Noguchi A, Sly WS (2006) Enhancement of drug delivery to bone: characterization of human tissue-nonspecific alkaline phosphatase tagged with an acidic oligopeptide. Mol Genet Metab 88:244–255

    Article  PubMed  CAS  Google Scholar 

  53. Walton RJ, Preston CJ, Russell RG, Kanis JA (1975) An estimate of the turnover rate of bone-derived plasma alkaline phosphatase in Paget’s disease. Clin Chim Acta 63:227–229

    Article  PubMed  CAS  Google Scholar 

  54. Komoda T, Sakagishi Y (1987) The function of carbohydrate moiety and alteration of carbohydrate composition in human alkaline phosphatase isoenzymes. Biochim Biophys Acta 523:395–406

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichi Miyamoto.

About this article

Cite this article

Ishizaki, J., Waki, Y., Takahashi-Nishioka, T. et al. Selective drug delivery to bone using acidic oligopeptides. J Bone Miner Metab 27, 1–8 (2009). https://doi.org/10.1007/s00774-008-0004-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-008-0004-z

Keywords

Navigation