Skip to main content

Advertisement

Log in

Potential involvement of p53 in ischemia/reperfusion-induced osteonecrosis

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Idiopathic osteonecrosis of the femoral head (ION) is a devastating pathological condition of unknown etiology. In this study, we developed a simple murine model of osteonecrosis and investigated the underlying molecular mechanisms. In this model, the central portion of the tails of male C57BL/6 mice were tightly ligated to produce ischemic regions at sites distal to the ligatures. The occlusive ligatures were maintained for the indicated periods and then removed to induce reperfusion. The tails were histologically examined, and gene expression was analyzed by PCR array. The effect of p53 expression on osteocytes apoptosis was examined using preosteocytic MLO-A5 cells. In addition, the expression of p53 was analyzed in the femoral head samples obtained from hip osteoarthritis (OA) patients and ION patients. Caudal vertebrae distal to the ligatures (distal region) exhibited histological changes mimicking those observed in ION. Expression of p53 was increased in the distal region, and overexpression of p53 induced apoptosis in MLO-A5 cells. Treatment with a p53 inhibitor suppressed osteocyte apoptosis in the distal region. Strong p53 immunostaining was observed in osteocytes, vascular endothelial cells, and bone marrow cells in the femoral heads from ION patients but not from OA patients. Ischemia/reperfusion of the caudal vertebrae is a useful murine model of osteonecrosis, mimicking the histological changes found in ION. Using this model, we found the possible involvement of p53 in the osteocyte apoptosis observed in ION. Therapeutics targeting p53 might be a useful approach to ameliorating or even preventing osteonecrosis in ION patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arlet J (1992) Nontraumatic avascular necrosis of the femoral head. Past, present, and future. Clin Orthop Relat Res 277:12–21

    PubMed  Google Scholar 

  2. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    PubMed  CAS  Google Scholar 

  3. Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462

    Article  PubMed  CAS  Google Scholar 

  4. Weinstein RS, Nicholas RW, Manolagas SC (2000) Apoptosis of osteocytes in glucocorticoid-induced osteonecrosis of the hip. J Clin Endocrinol Metab 85:2907–2912

    Article  PubMed  CAS  Google Scholar 

  5. Shibahara M, Nishida K, Asahara H, Yoshikawa T, Mitani S, Kondo Y, Inoue H (2000) Increased osteocyte apoptosis during the development of femoral head osteonecrosis in spontaneously hypertensive rats. Acta Med Okayama 54:67–74

    PubMed  CAS  Google Scholar 

  6. Kabata T, Kubo T, Matsumoto T, Nishino M, Tomita K, Katsuda S, Horii T, Uto N, Kitajima I (2000) Apoptotic cell death in steroid induced osteonecrosis: an experimental study in rabbits. J Rheumatol 27:2166–2171

    PubMed  CAS  Google Scholar 

  7. Yamano S, Tokino T, Yasuda M, Kaneuchi M, Takahashi M, Niitsu Y, Fujinaga K, Yamashita T (1999) Induction of transformation and p53-dependent apoptosis by adenovirus type 5 E4orf6/7 cDNA. J Virol 73:10095–10103

    PubMed  CAS  Google Scholar 

  8. Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199

    Article  PubMed  CAS  Google Scholar 

  9. Miyake S, Makimura M, Kanegae Y, Harada S, Sato Y, Takamori K, Tokuda C, Saito I (1996) Efficient generation of recombinant adenoviruses using adenovirus DNA-terminal protein complex and a cosmid bearing the full-length virus genome. Proc Natl Acad Sci U S A 93:1320–1324

    Article  PubMed  CAS  Google Scholar 

  10. Tanaka S, Takahashi T, Takayanagi H, Miyazaki T, Oda H, Nakamura K, Hirai H, Kurokawa T (1998) Modulation of osteoclast function by adenovirus vector-induced epidermal growth factor receptor. J Bone Miner Res 13:1714–1720

    Article  PubMed  CAS  Google Scholar 

  11. Kono SJ, Oshima Y, Hoshi K, Bonewald LF, Oda H, Nakamura K, Kawaguchi H, Tanaka S (2007) Erk pathways negatively regulate matrix mineralization. Bone (NY) 40:68–74

    CAS  Google Scholar 

  12. Kelly KJ, Plotkin Z, Vulgamott SL, Dagher PC (2003) P53 mediates the apoptotic response to GTP depletion after renal ischemia-reperfusion: protective role of a p53 inhibitor. J Am Soc Nephrol 14:128–138

    Article  PubMed  CAS  Google Scholar 

  13. Komarov PG, Komarova EA, Kondratov RV, Christov-Tselkov K, Coon JS, Chernov MV, Gudkov AV (1999) A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285:1733–1737

    Article  PubMed  CAS  Google Scholar 

  14. Endo H, Kamada H, Nito C, Nishi T, Chan PH (2006) Mitochondrial translocation of p53 mediates release of cytochrome c and hippocampal CA1 neuronal death after transient global cerebral ischemia in rats. J Neurosci 26:7974–7983

    Article  PubMed  CAS  Google Scholar 

  15. Leker RR, Aharonowiz M, Greig NH, Ovadia H (2004) The role of p53-induced apoptosis in cerebral ischemia: effects of the p53 inhibitor pifithrin alpha. Exp Neurol 187:478–486

    Article  PubMed  CAS  Google Scholar 

  16. Tanaka S, Nakamura K, Takahasi N, Suda T (2005) Role of RANKL in physiological and pathological bone resorption and therapeutics targeting the RANKL-RANK signaling system. Immunol Rev 208:30–49

    Article  PubMed  CAS  Google Scholar 

  17. Moll UM, Wolff S, Speidel D, Deppert W (2005) Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol 17:631–636

    Article  PubMed  CAS  Google Scholar 

  18. Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M, Green DR (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303:1010–1014

    Article  PubMed  CAS  Google Scholar 

  19. Burns TF, Bernhard EJ, El-Deiry WS (2001) Tissue specific expression of p53 target genes suggests a key role for KILLER/DR5 in p53-dependent apoptosis in vivo. Oncogene 20:4601–4612

    Article  PubMed  CAS  Google Scholar 

  20. Wu GS, Burns TF, McDonald ER III, Meng RD, Kao G, Muschel R, Yen T, el-Deiry WS (1999) Induction of the TRAIL receptor KILLER/DR5 in p53-dependent apoptosis but not growth arrest. Oncogene 18:6411–6418

    Article  PubMed  CAS  Google Scholar 

  21. Hsu YT, Wolter KG, Youle RJ (1997) Cytosol-to-membrane redistribution of Bax and Bcl-X(L) during apoptosis. Proc Natl Acad Sci U S A 94:3668–3672

    Article  PubMed  CAS  Google Scholar 

  22. Singh TR, Shankar S, Srivastava RK (2005) HDAC inhibitors enhance the apoptosis-inducing potential of TRAIL in breast carcinoma. Oncogene 24:4609–4623

    Article  PubMed  CAS  Google Scholar 

  23. Jones JP Jr (1992) Intravascular coagulation and osteonecrosis. Clin Orthop Relat Res 277:41–53

    PubMed  Google Scholar 

  24. Bouteiller G, Arlet J, Blasco A, Vigoni F, Elefterion A (1983) Is osteonecrosis of the femoral head avascular? Bone blood flow measurements after long-term treatment with corticosteroids. Metab Bone Dis Relat Res 4:313–318

    Article  PubMed  CAS  Google Scholar 

  25. Hirano T, Iwasaki K, Sagara K, Nishimura Y, Kumashiro T (1989) Necrosis of the femoral head in growing rats. Occlusion of lateral epiphyseal vessels. Acta Orthop Scand 60:407–410

    CAS  Google Scholar 

  26. Yamamoto T, Irisa T, Sugioka Y, Sueishi K (1997) Effects of pulse methylprednisolone on bone and marrow tissues: corticosteroid-induced osteonecrosis in rabbits. Arthritis Rheum 40:2055–2064

    Article  PubMed  CAS  Google Scholar 

  27. Hsieh AS, Winet H, Bao JY, Stevanovic M (1999) Model for intravital microscopic evaluation of the effects of arterial occlusion-caused ischemia in bone. Ann Biomed Eng 27:508–516

    Article  PubMed  CAS  Google Scholar 

  28. Shabat S, Nyska A, Long PH, Goelman G, Abramovitch R, Ezov N, Levin-Harrus T, Peddada S, Redlich M, Yedgar S, Nyska M (2004) Osteonecrosis in a chemically induced rat model of human hemolytic disorders associated with thrombosis: a new model for avascular necrosis of bone. Calcif Tissue Int 74:220–228

    Article  PubMed  CAS  Google Scholar 

  29. Irisa T, Yamamoto T, Miyanishi K, Yamashita A, Iwamoto Y, Sugioka Y, Sueishi K (2001) Osteonecrosis induced by a single administration of low-dose lipopolysaccharide in rabbits. Bone (NY) 28:641–649

    CAS  Google Scholar 

  30. Matsui M, Ohzono K, Nakamura N, Sugano N, Masuhara K, Nakata K, Takaoka K, Ono K, Ochi T (1995) The immune reaction to heterologous serum causes osteonecrosis in rabbits. Virchows Arch 427:205–211

    Article  PubMed  CAS  Google Scholar 

  31. Reffelmann T, Kloner RA (2006) The no-reflow phenomenon: A basic mechanism of myocardial ischemia and reperfusion. Basic Res Cardiol 101:359–372

    Article  PubMed  Google Scholar 

  32. Jaeschke H (2006) Mechanisms of liver injury. II. Mechanisms of neutrophil-induced liver cell injury during hepatic ischemia-reperfusion and other acute inflammatory conditions. Am J Physiol Gastrointest Liver Physiol 290:1083–1088

    Article  Google Scholar 

  33. Lee JM, Grabb MC, Zipfel GJ, Choi DW (2000) Brain tissue responses to ischemia. J Clin Invest 106:723–731

    Article  PubMed  CAS  Google Scholar 

  34. Vegter J, Lubsen CC (1987) Fractional necrosis of the femoral head epiphysis after transient increase in joint pressure. An experimental study in juvenile rabbits. J Bone Joint Surg [Br] 69:530–535

    CAS  Google Scholar 

  35. Drescher W, Schneider T, Becker C, Hobolth J, Ruther W, Hansen ES, Bunger C (2001) Selective reduction of bone blood flow by short-term treatment with high-dose methylprednisolone. An experimental study in pigs. J Bone Joint Surg [Br] 83:274–277

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakae Tanaka.

About this article

Cite this article

Okuma, C., Kaketa, T., Hikita, A. et al. Potential involvement of p53 in ischemia/reperfusion-induced osteonecrosis. J Bone Miner Metab 26, 576–585 (2008). https://doi.org/10.1007/s00774-007-0849-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-007-0849-6

Key words

Navigation