Skip to main content

Advertisement

Log in

Independent and combined effect of nutrition and exercise on bone mass development

  • Review Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Food intake provides the necessary components for adequate metabolic functions in bone. Calcium, phosphorus, vitamin D, magnesium, proteins, and fluoride are some of the most important nutrients in this regard. These have different effects on bone mass. Additionally, exercise has been shown to elicit osteogenic responses in bone development; indeed, it seems to potentiate, for example, the effect of calcium supplementation on bone mass. However, the nutrition-exercise-bone mass relationship is complex and needs further in-depth investigation. As a first step, therefore, we reviewed current knowledge about the role of nutrition on the development of bone tissue and how physical activity affects the nutrient-bone relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boskey AL (1999) Mineralization, structure, and function of bone. In: Seibel MJ, Robins SP, Bilezikian JP (eds) Dynamics of Bone and Cartilage Metabolism. Academic Press, San Diego, pp 153–164

    Google Scholar 

  2. Guyton AC, Hall JE (2003) Tratado de Fisiología Médica. McGraw-Hill. Interamericana de España, Aravaca (Madrid)

    Google Scholar 

  3. Prentice A (2004) Diet, nutrition and the prevention of osteoporosis. Public Health Nutr 7:227–243

    Article  PubMed  CAS  Google Scholar 

  4. Ilich JZ, Kerstetter JE (2000) Nutrition in bone health revisited: a story beyond calcium. J Am Coll Nutr 19:715–737

    PubMed  CAS  Google Scholar 

  5. Ilich JZ, Skugor M, Hangartner T, Baoshe A, Matkovic V (1998) Relation of nutrition, body composition and physical activity to skeletal development: a cross-sectional study in preadolescent females. J Am Coll Nutr 17:136–147

    PubMed  CAS  Google Scholar 

  6. Manzoni P, Brambilla P, Pietrobelli A, Beccaria L, Bianchessi A, Mora S, Chiumello G (1996) Influence of body composition on bone mineral content in children and adolescents. Am J Clin Nutr 64:603–607

    PubMed  CAS  Google Scholar 

  7. Weaver CM (2000) The growing years and prevention of osteoporosis in later life. Proc Nutr Soc 59:303–306

    PubMed  CAS  Google Scholar 

  8. Weaver CM (2000) Calcium requirements of physically active people. Am J Clin Nutr 72:579S–584S

    PubMed  CAS  Google Scholar 

  9. Gustavsson A, Thorsen K, Nordstrom P (2003) A 3-year longitudinal study of the effect of physical activity on the accrual of bone mineral density in healthy adolescent males. Calcif Tissue Int 73:108–114

    Article  PubMed  CAS  Google Scholar 

  10. Vicente-Rodriguez G, Ara I, Perez-Gomez J, Dorado C, Serrano-Sanchez JA, Calbet JAL (2004) High femoral bone mineral density accretion in prepubertal football players. Med Sci Sports Exerc 33:1789–1795

    Article  Google Scholar 

  11. Vicente-Rodriguez G, Jimenez-Ramirez J, Ara I, Serrano-Sanchez JA, Dorado C, Calbet JA (2003) Enhanced bone mass and physical fitness in prepubescent footballers. Bone (NY) 33:853–859

    CAS  Google Scholar 

  12. Thorpe DL, Knutsen SF, Beeson WL, Fraser GE (2006) The effect of vigorous physical activity and risk of wrist fracture over 25 years in a low-risk survivor cohort. J Bone Miner Metab 24:476–483

    Article  PubMed  Google Scholar 

  13. Slemenda CW, Peacock M, Hui S, Zhou L, Johnston CC (1997) Reduced rates of skeletal remodeling are associated with increased bone mineral density during the development of peak skeletal mass. J Bone Miner Res 12:676–682

    Article  PubMed  CAS  Google Scholar 

  14. Wosje KS, Specker BL (2000) Role of calcium in bone health during childhood. Nutr Rev 58:253–268

    Article  PubMed  CAS  Google Scholar 

  15. Winzenberg T, Shaw K, Fryer J, Jones G (2006) Effects of calcium supplementation on bone density in healthy children: meta-analysis of randomised controlled trials. BMJ 333:775

    Article  PubMed  CAS  Google Scholar 

  16. Specker B, Vukovich M (2007) Evidence for an interaction between exercise and nutrition for improved bone health during growth. Med Sport Sci 51:50–63

    Article  PubMed  Google Scholar 

  17. Bass S, Pearce G, Bradney M, Hendrich E, Delmas PD, Harding A, Seeman E (1998) Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts. J Bone Miner Res 13:500–507

    Article  PubMed  CAS  Google Scholar 

  18. Kontulainen S, Sievanen H, Kannus P, Pasanen M, Vuori I (2003) Effect of long-term impact-loading on mass, size, and estimated strength of humerus and radius of female racquet-sports players: a peripheral quantitative computed tomography study between young and old starters and controls. J Bone Miner Res 18: 352–359

    Article  PubMed  Google Scholar 

  19. Bailey DA, Martin AD, McKay HA, Whiting S, Mirwald R (2000) Calcium accretion in girls and boys during puberty: a longitudinal analysis. J Bone Miner Res 15:2245–2250

    Article  PubMed  CAS  Google Scholar 

  20. Karlsson MK, Magnusson H, Karlsson C, Seeman E (2001) The duration of exercise as a regulator of bone mass. Bone (NY) 28:128–132

    CAS  Google Scholar 

  21. Heinonen A (2001) Biomechanics. In: Khan K, McKay H, Kannus P, Bailey D, Wark J, Bennell K (eds) Physical Activity and Bone Health. Human Kinetics, Champaign, IL, pp 23–34

    Google Scholar 

  22. Vicente-Rodriguez G (2006) How does exercise affect bone development during growth? Sports Med 36:561–569

    Article  PubMed  Google Scholar 

  23. Vicente-Rodriguez G, Ara I, Perez-Gomez J, Serrano-Sanchez JA, Dorado C, Calbet JA (2004) High femoral bone mineral density accretion in prepubertal soccer players. Med Sci Sports Exerc 36:1789–1795

    Article  PubMed  Google Scholar 

  24. Lee WT, Leung SS, Wang SH, Xu YC, Zeng WP, Lau J, Oppenheimer SJ, Cheng JC (1994) Double-blind, controlled calcium supplementation and bone mineral accretion in children accustomed to a low-calcium diet. Am J Clin Nutr 60:744–750

    PubMed  CAS  Google Scholar 

  25. Welten DC, Kemper HC, Post GB, van Staveren WA (1995) A meta-analysis of the effect of calcium intake on bone mass in young and middle aged females and males. J Nutr 125:2802–2813

    PubMed  CAS  Google Scholar 

  26. Matkovic V (1991) Calcium metabolism and calcium requirements during skeletal modeling and consolidation of bone mass. Am J Clin Nutr 54:245S–260S

    PubMed  CAS  Google Scholar 

  27. Matkovic V, Badenhop-Stevens NE, Landoll JD, Goel P, Li B (2002) Long term effect of calcium supplementation and dairy products on bone mass of young females. J Bone Miner Res 17: S172

    Article  Google Scholar 

  28. Nieves JW, Komar L, Cosman F, Lindsay R (1998) Calcium potentiates the effect of estrogen and calcitonin on bone mass: review and analysis. Am J Clin Nutr 67:18–24

    PubMed  CAS  Google Scholar 

  29. Heaney RP (1995) Interpreting trials of bone-active agents. Am J Med 98:329–330

    Article  PubMed  CAS  Google Scholar 

  30. Lee WT, Leung SS, Leung DM, Cheng JC (1996) A follow-up study on the effects of calcium-supplement withdrawal and puberty on bone acquisition of children. Am J Clin Nutr 64: 71–77

    PubMed  CAS  Google Scholar 

  31. Anderson JJ (2000) The important role of physical activity in skeletal development: how exercise may counter low calcium intake. Am J Clin Nutr 71:1384–1386

    PubMed  CAS  Google Scholar 

  32. Bonjour JP, Chevalley T, Ammann P, Slosman D, Rizzoli R (2001) Gain in bone mineral mass in prepubertal girls 3.5 years after discontinuation of calcium supplementation: a follow-up study. Lancet 358:1208–1212

    Article  PubMed  CAS  Google Scholar 

  33. Dibba B, Prentice A, Ceesay M, Mendy M, Darboe S, Stirling DM, Cole TJ, Poskitt EM (2002) Bone mineral contents and plasma osteocalcin concentrations of Gambian children 12 and 24 mo after the withdrawal of a calcium supplement. Am J Clin Nutr 76:681–686

    PubMed  CAS  Google Scholar 

  34. Chevalley T, Rizzoli R, Hans D, Ferrari S, Bonjour JP (2005) Interaction between calcium intake and menarcheal age on bone mass gain: an eight-year follow-up study from prepuberty to postmenarche. J Clin Endocrinol Metab 90:44–51

    Article  PubMed  CAS  Google Scholar 

  35. Merrilees MJ, Smart EJ, Gilchrist NL, Frampton C, Turner JG, Hooke E, March RL, Maguire P (2000) Effects of diary food supplements on bone mineral density in teenage girls. Eur J Nutr 39:256–262

    Article  PubMed  CAS  Google Scholar 

  36. Dibba B, Prentice A, Ceesay M, Stirling DM, Cole TJ, Poskitt EM (2000) Effect of calcium supplementation on bone mineral accretion in Gambian children accustomed to a low-calcium diet. Am J Clin Nutr 71:544–549

    PubMed  CAS  Google Scholar 

  37. Matkovic V, Landoll JD, Badenhop-Stevens NE, Ha EY, Crncevic-Orlic Z, Li B, Goel P (2004) Nutrition influences skeletal development from childhood to adulthood: a study of hip, spine, and forearm in adolescent females. J Nutr 134:701S–705S

    PubMed  Google Scholar 

  38. Matkovic V, Heaney RP (1992) Calcium balance during human growth: evidence for threshold behavior. Am J Clin Nutr 55: 992–996

    PubMed  CAS  Google Scholar 

  39. Whiting SJ, Boyle JL, Thompson A, Mirwald RL, Faulkner RA (2002) Dietary protein, phosphorus and potassium are beneficial to bone mineral density in adult men consuming adequate dietary calcium. J Am Coll Nutr 21:402–409

    PubMed  CAS  Google Scholar 

  40. Vatanparast H, Baxter-Jones A, Faulkner RA, Bailey DA, Whiting SJ (2005) Positive effects of vegetable and fruit consumption and calcium intake on bone mineral accrual in boys during growth from childhood to adolescence: the University of Saskatchewan Pediatric Bone Mineral Accrual Study. Am J Clin Nutr 82:700–706

    PubMed  CAS  Google Scholar 

  41. Matkovic V, Ilich JZ, Andon MB, Hsieh LC, Tzagournis MA, Lagger BJ, Goel PK (1995) Urinary calcium, sodium, and bone mass of young females. Am J Clin Nutr 62:417–425

    PubMed  CAS  Google Scholar 

  42. Borer KT (2005) Physical activity in the prevention and amelioration of osteoporosis in women: interaction of mechanical, hormonal and dietary factors. Sports Med 35:779–830

    Article  PubMed  Google Scholar 

  43. Dawson-Hughes B, Harris SS (2002) Calcium intake influences the association of protein intake with rates of bone loss in elderly men and women. Am J Clin Nutr 75:773–779

    PubMed  CAS  Google Scholar 

  44. Bonofiglio D, Garofalo C, Catalano S, Marsico S, Aquila S, Ando S (2004) Low calcium intake is associated with decreased adrenal androgens and reduced bone age in premenarcheal girls in the last pubertal stages. J Bone Miner Metab 22:64–70

    Article  PubMed  CAS  Google Scholar 

  45. Bonjour JP, Carrie AL, Ferrari S, Clavien H, Slosman D, Theintz G, Rizzoli R (1997) Calcium-enriched foods and bone mass growth in prepubertal girls: a randomized, double-blind, placebo-controlled trial. J Clin Invest 99:1287–1294

    Article  PubMed  CAS  Google Scholar 

  46. Seeman E (2001) Clinical review 137: Sexual dimorphism in skeletal size, density, and strength. J Clin Endocrinol Metab 86: 4576–4584

    Article  PubMed  CAS  Google Scholar 

  47. Lee WT, Leung SS, Leung DM, Wang SH, Xu YC, Zeng WP, Cheng JC (1997) Bone mineral acquisition in low calcium intake children following the withdrawal of calcium supplement. Acta Paediatr 86:570–576

    Article  PubMed  CAS  Google Scholar 

  48. Lloyd T, Andon MB, Rollings N, Martel JK, Landis JR, Demers LM, Eggli DF, Kieselhorst K, Kulin HE (1993) Calcium supplementation and bone mineral density in adolescent girls. JAMA 270:841–844

    Article  PubMed  CAS  Google Scholar 

  49. Tylavsky FA, Anderson JJ, Talmage RV, Taft TN (1992) Are calcium intakes and physical activity patterns during adolescence related to radial bone mass of white college-age females? Osteoporos Int 2:232–240

    Article  PubMed  CAS  Google Scholar 

  50. Babaroutsi E, Magkos F, Manios Y, Sidossis LS (2005) Body mass index, calcium intake, and physical activity affect calcaneal ultrasound in healthy Greek males in an age-dependent and parameter-specific manner. J Bone Miner Metab 23:157–166

    Article  PubMed  Google Scholar 

  51. Katzman DK, Bachrach LK, Carter DR, Marcus R (1991) Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. J Clin Endocrinol Metab 73:1332–1339

    PubMed  CAS  Google Scholar 

  52. Chilibeck PD, Sale DG, Webber CE (1995) Exercise and bone mineral density. Sports Med 19:103–122

    Article  PubMed  CAS  Google Scholar 

  53. Dalsky GP, Stocke KS, Ehsani AA, Slatopolsky E, Lee WC, Birge SJ Jr (1988) Weight-bearing exercise training and lumbar bone mineral content in postmenopausal women. Ann Intern Med 108:824–828

    PubMed  CAS  Google Scholar 

  54. Suominen H (1993) Bone mineral density and long term exercise. An overview of cross-sectional athlete studies. Sports Med 16:316–330

    Article  PubMed  CAS  Google Scholar 

  55. Lau EM, Woo J, Leung PC, Swaminathan R, Leung D (1992) The effects of calcium supplementation and exercise on bone density in elderly Chinese women. Osteoporos Int 2:168–173

    Article  PubMed  CAS  Google Scholar 

  56. Prince R, Devine A, Dick I, Criddle A, Kerr D, Kent N, Price R, Randell A (1995) The effects of calcium supplementation (milk powder or tablets) and exercise on bone density in postmenopausal women. J Bone Miner Res 10:1068–1075

    PubMed  CAS  Google Scholar 

  57. Prince RL, Smith M, Dick IM, Price RI, Webb PG, Henderson NK, Harris MM (1991) Prevention of postmenopausal osteoporosis. A comparative study of exercise, calcium supplementation, and hormone-replacement therapy. N Engl J Med 325:1189–1195

    PubMed  CAS  Google Scholar 

  58. Welch JM, Weaver CM (2005) Calcium and exercise affect the growing skeleton. Nutr Rev 63:361–373

    Article  PubMed  Google Scholar 

  59. Specker BL (1996) Evidence for an interaction between calcium intake and physical activity on changes in bone mineral density. J Bone Miner Res 11:1539–1544

    Article  PubMed  CAS  Google Scholar 

  60. Gunnes M, Lehmann EH (1996) Physical activity and dietary constituents as predictors of forearm cortical and trabecular bone gain in healthy children and adolescents: a prospective study. Acta Paediatr 85:19–25

    Article  PubMed  CAS  Google Scholar 

  61. Lappe J, Stubby J, Davies K, Recker R (2001) Exercise without sufficient calcium does not increase rate of bone mass accrual in pubertal females. J Bone Miner Res 16:s138

    Google Scholar 

  62. Courteix D, Jaffre C, Lespessailles E, Benhamou L (2005) Cumulative effects of calcium supplementation and physical activity on bone accretion in premenarchal children: a double-blind randomised placebo-controlled trial. Int J Sports Med 26: 332–338

    Article  PubMed  CAS  Google Scholar 

  63. Specker B, Binkley T (2003) Randomized trial of physical activity and calcium supplementation on bone mineral content in 3-to 5-year-old children. J Bone Miner Res 18:885–892

    Article  PubMed  CAS  Google Scholar 

  64. Iuliano-Burns S, Saxon L, Naughton G, Gibbons K, Bass SL (2003) Regional specificity of exercise and calcium during skeletal growth in girls: a randomized controlled trial. J Bone Miner Res 18:156–162

    Article  PubMed  Google Scholar 

  65. Stear SJ, Prentice A, Jones SC, Cole TJ (2003) Effect of a calcium and exercise intervention on the bone mineral status of 16–18-yold adolescent girls. Am J Clin Nutr 77:985–992

    PubMed  CAS  Google Scholar 

  66. Specker B, Binkley T, Fahrenwald N (2004) Increased periosteal circumference remains present 12 months after an exercise intervention in preschool children. Bone (NY) 35:1383–1388

    Google Scholar 

  67. Branca F (1999) Physical activity, diet and skeletal health. Public Health Nutr 2:391–396

    Article  PubMed  CAS  Google Scholar 

  68. Horowitz M, Morris HA, Hartley TF, Need AG, Wishart J, Ryan P, Nordin BE (1987) The effect of an oral calcium load on plasma ionized calcium and parathyroid hormone concentrations in osteoporotic postmenopausal women. Calcif Tissue Int 40: 133–136

    Article  PubMed  CAS  Google Scholar 

  69. Kent GN, Price RI, Gutteridge DH, Allen JR, Blakeman SL, Bhagat CI, St John A, Barnes MP, Smith M, Evans DV (1991) Acute effects of an oral calcium load in pregnancy and lactation: findings on renal calcium conservation and biochemical indices of bone turnover. Miner Electrolyte Metab 17:1–7

    PubMed  CAS  Google Scholar 

  70. Carmeliet G, Verstuyf A, Daci E, Bouillon R (1999) The vitamin D hormone and its nuclear receptor: genomic mechanisms involved in bone biology. In: Seibel MJ, Robins SP, Bilezikian JP (eds) Dynamics of Bone and Cartilage Metabolism. Academic Press, San Diego

    Google Scholar 

  71. Cooper C, Javaid K, Westlake S, Harvey N, Dennison E (2005) Developmental origins of osteoporotic fracture: the role of maternal vitamin D insufficiency. J Nutr 135:2728S–2734S

    PubMed  CAS  Google Scholar 

  72. Zamora SA, Rizzoli R, Belli DC, Slosman DO, Bonjour JP (1999) Vitamin D supplementation during infancy is associated with higher bone mineral mass in prepubertal girls. J Clin Endocrinol Metab 84:4541–4544.

    Article  PubMed  CAS  Google Scholar 

  73. Cheng S, Tylavsky F, Kroger H, Karkkainen M, Lyytikainen A, Koistinen A, Mahonen A, Alen M, Halleen J, Vaananen K, Lamberg-Allardt C (2003) Association of low 25-hydroxyvitamin D concentrations with elevated parathyroid hormone concentrations and low cortical bone density in early pubertal and prepubertal Finnish girls. Am J Clin Nutr 78:485–492

    PubMed  CAS  Google Scholar 

  74. Jones G, Dwyer T, Hynes KL, Parameswaran V, Greenaway TM (2005) Vitamin D insufficiency in adolescent males in Southern Tasmania: prevalence, determinants, and relationship to bone turnover markers. Osteoporos Int 16:636–641

    Article  PubMed  CAS  Google Scholar 

  75. Lehtonen-Veromaa MK, Mottonen TT, Nuotio IO, Irjala KM, Leino AE, Viikari JS (2002) Vitamin D and attainment of peak bone mass among peripubertal Finnish girls: a 3-year prospective study. Am J Clin Nutr 76:1446–1453

    PubMed  CAS  Google Scholar 

  76. Branca F, Vatuena S (2001) Calcium, physical activity and bone health: building bones for a stronger future. Public Health Nutr 4:117–123.

    Article  PubMed  CAS  Google Scholar 

  77. Holick MF (2006) The role of vitamin D for bone health and fracture prevention. Curr Osteoporos Rep 4:96–102

    Article  PubMed  Google Scholar 

  78. Moyer-Mileur LJ, Xie B, Ball SD, Pratt T (2003) Bone mass and density response to a 12-month trial of calcium and vitamin D supplement in preadolescent girls. J Musculoskelet Neuronal Interact 3:63–70

    PubMed  CAS  Google Scholar 

  79. Cumming RG, Nevitt MC (1997) Calcium for prevention of osteoporotic fractures in postmenopausal women. J Bone Miner Res 12:1321–1329

    Article  PubMed  CAS  Google Scholar 

  80. Khaw KT, Sneyd MJ, Compston J (1992) Bone density parathyroid hormone and 25-hydroxyvitamin D concentrations in middle aged women. BMJ 305:273–277

    PubMed  CAS  Google Scholar 

  81. Looker AC (2007) Do body fat and exercise modulate vitamin D status? Nutr Rev 65:S124–S126

    Article  PubMed  Google Scholar 

  82. Maimoun L, Manetta J, Couret I, Dupuy AM, Mariano-Goulart D, Micallef JP, Peruchon E, Rossi M (2006) The intensity level of physical exercise and the bone metabolism response. Int J Sports Med 27:105–111

    Article  PubMed  CAS  Google Scholar 

  83. Scragg R, Holdaway I, Singh V, Metcalf P, Baker J, Dryson E (1995) Serum 25-hydroxyvitamin D3 is related to physical activity and ethnicity but not obesity in a multicultural workforce. Aust N Z J Med 25:218–223

    PubMed  CAS  Google Scholar 

  84. Shapiro R, Heaney RP (2003) Co-dependence of calcium and phosphorus for growth and bone development under conditions of varying deficiency. Bone (NY) 32:532–540

    CAS  Google Scholar 

  85. Nordin BE (1988) Phosphorus. J Food Nutr 45:62–75

    Google Scholar 

  86. Calvo MS, Kumar R, Heath H (1990) Persistently elevated parathyroid hormone secretion and action in young women after four weeks of ingesting high phosphorus, low calcium diets. J Clin Endocrinol Metab 70:1334–1340

    Article  PubMed  CAS  Google Scholar 

  87. Heaney RP, Nordin BE (2002) Calcium effects on phosphorus absorption: implications for the prevention and co-therapy of osteoporosis. J Am Coll Nutr 21:239–244

    PubMed  CAS  Google Scholar 

  88. Calvo MS (1994) The effects of high phosphorus intake on calcium homeostasis. Adv Nutr Res 9:183–207

    PubMed  CAS  Google Scholar 

  89. Heaney RP (2004) Phosphorus nutrition and the treatment of osteoporosis. Mayo Clin Proc 79:91–97

    PubMed  CAS  Google Scholar 

  90. Heaney RP (1987) The role of nutrition in prevention and management of osteoporosis. Clin Obstet Gynecol 30:833–846

    Article  PubMed  CAS  Google Scholar 

  91. Miggiano GA, Gagliardi L (2005) Diet, nutrition and bone health. Clin Ter 156:47–56

    PubMed  CAS  Google Scholar 

  92. Buclin T, Cosma M, Appenzeller M, Jacquet AF, Decosterd LA, Biollaz J, Burckhardt P (2001) Diet acids and alkalis influence calcium retention in bone. Osteoporos Int 12:493–499

    Article  PubMed  CAS  Google Scholar 

  93. Heaney RP (1993) Protein intake and the calcium economy. J Am Diet Assoc 93:1259–1260

    Article  PubMed  CAS  Google Scholar 

  94. Teegarden D, Lyle RM, McCabe GP, McCabe LD, Proulx WR, Michon K, Knight AP, Johnston CC, Weaver CM (1998) Dietary calcium, protein, and phosphorus are related to bone mineral density and content in young women. Am J Clin Nutr 68: 749–754

    PubMed  CAS  Google Scholar 

  95. Lima F, De Falco V, Baima J, Carazzato JG, Pereira RM (2001) Effect of impact load and active load on bone metabolism and body composition of adolescent athletes. Med Sci Sports Exerc 33:1318–1323

    Article  PubMed  CAS  Google Scholar 

  96. Bounds W, Skinner J, Carruth BR, Ziegler P (2005) The relationship of dietary and lifestyle factors to bone mineral indexes in children. J Am Diet Assoc 105:735–741

    Article  PubMed  Google Scholar 

  97. Booth SL, Broe KE, Gagnon DR, Tucker KL, Hannan MT, McLean RR, Dawson-Hughes B, Wilson PW, Cupples LA, Kiel DP (2003) Vitamin K intake and bone mineral density in women and men. Am J Clin Nutr 77:512–516

    PubMed  CAS  Google Scholar 

  98. Kalkwarf HJ, Khoury JC, Bean J, Elliot JG (2004) Vitamin K, bone turnover, and bone mass in girls. Am J Clin Nutr 80: 1075–1080

    PubMed  CAS  Google Scholar 

  99. Szulc P, Seeman E, Delmas PD (2000) Biochemical measurements of bone turnover in children and adolescents. Osteoporos Int 11:281–294

    Article  PubMed  CAS  Google Scholar 

  100. Vermeer C, Jie KS, Knapen MH (1995) Role of vitamin K in bone metabolism. Annu Rev Nutr 15:1–22

    Article  PubMed  CAS  Google Scholar 

  101. Booth SL, Tucker KL, Chen H, Hannan MT, Gagnon DR, Cupples LA, Wilson PW, Ordovas J, Schaefer EJ, Dawson-Hughes B, Kiel DP (2000) Dietary vitamin K intakes are associated with hip fracture but not with bone mineral density in elderly men and women. Am J Clin Nutr 71:1201–1208

    PubMed  CAS  Google Scholar 

  102. Tylavsky FA, Holliday K, Danish R, Womack C, Norwood J, Carbone L (2004) Fruit and vegetable intakes are an independent predictor of bone size in early pubertal children. Am J Clin Nutr 79:311–317

    PubMed  CAS  Google Scholar 

  103. New SA, Robins SP, Campbell MK, Martin JC, Garton MJ, Bolton-Smith C, Grubb DA, Lee SJ, Reid DM (2000) Dietary influences on bone mass and bone metabolism: further evidence of a positive link between fruit and vegetable consumption and bone health? Am J Clin Nutr 71:142–151

    PubMed  CAS  Google Scholar 

  104. Wattanapenpaiboon N, Lukito W, Wahlqvist ML, Strauss BJ (2003) Dietary carotenoid intake as a predictor of bone mineral density. Asia Pac J Clin Nutr 12:467–473

    PubMed  CAS  Google Scholar 

  105. McGartland CP, Robson PJ, Murray LJ, Cran GW, Savage MJ, Watkins DC, Rooney MM, Boreham CA (2004) Fruit and vegetable consumption and bone mineral density: the Northern Ireland Young Hearts Project. Am J Clin Nutr 80:1019–1023

    PubMed  CAS  Google Scholar 

  106. Vescini F, Buffa A, La Manna G, Ciavatti A, Rizzoli E, Bottura A, Stefoni S, Caudarella R (2005) Long-term potassium citrate therapy and bone mineral density in idiopathic calcium stone formers. J Endocrinol Invest 28:218–222

    PubMed  CAS  Google Scholar 

  107. Saito N, Tabata N, Saito S, Andou Y, Onaga Y, Iwamitsu A, Sakamoto M, Hori T, Sayama H, Kawakita T (2004) Bone mineral density, serum albumin and serum magnesium. J Am Coll Nutr 23:701S–703S

    PubMed  CAS  Google Scholar 

  108. Feskanich D, Weber P, Willett WC, Rockett H, Booth SL, Colditz GA (1999) Vitamin K intake and hip fractures in women: a prospective study. Am J Clin Nutr 69:74–79

    PubMed  CAS  Google Scholar 

  109. Wangen KE, Duncan AM, Merz-Demlow BE, Xu X, Marcus R, Phipps WR, Kurzer MS (2000) Effects of soy isoflavones on markers of bone turnover in premenopausal and postmenopausal women. J Clin Endocrinol Metab 85:3043–3048

    Article  PubMed  CAS  Google Scholar 

  110. Bonjour JP, Chevalley T, Rizzoli R, Ferrari S (2007) Geneenvironment interactions in the skeletal response to nutrition and exercise during growth. Med Sport Sci 51:64–80

    Article  PubMed  Google Scholar 

  111. Sellmeyer DE, Stone KL, Sebastian A, Cummings SR (2001) A high ratio of dietary animal to vegetable protein increases the rate of bone loss and the risk of fracture in postmenopausal women. Study of Osteoporotic Fractures Research Group. Am J Clin Nutr 73:118–122

    PubMed  CAS  Google Scholar 

  112. Tucker KL, Hannan MT, Kiel DP (2001) The acid-base hypothesis: diet and bone in the Framingham Osteoporosis Study. Eur J Nutr 40:231–237

    Article  PubMed  CAS  Google Scholar 

  113. Barzel US, Massey LK (1998) Excess dietary protein can adversely affect bone. J Nutr 128:1051–1053

    PubMed  CAS  Google Scholar 

  114. Abelow BJ, Holford TR, Insogna KL (1992) Cross-cultural association between dietary animal protein and hip fracture: a hypothesis. Calcif Tissue Int 50:14–18

    Article  PubMed  CAS  Google Scholar 

  115. Cordain L, Eaton SB, Sebastian A, Mann N, Lindeberg S, Watkins BA, O’Keefe JH, Brand-Miller J (2005) Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr 81:341–354

    PubMed  CAS  Google Scholar 

  116. Kerstetter JE, Svastisalee CM, Caseria DM, Mitnick ME, Insogna KL (2000) A threshold for low-protein-diet-induced elevations in parathyroid hormone. Am J Clin Nutr 72:168–173

    PubMed  CAS  Google Scholar 

  117. Kerstetter JE, Looker AC, Insogna KL (2000) Low dietary protein and low bone density. Calcif Tissue Int 66:313

    Article  PubMed  CAS  Google Scholar 

  118. Zanker CL, Swaine IL (1998) Relation between bone turnover, oestradiol, and energy balance in women distance runners. Br J Sports Med 32:167–171.

    PubMed  CAS  Google Scholar 

  119. Young N, Formica C, Szmukler G, Seeman E (1994) Bone density at weight-bearing and nonweight-bearing sites in ballet dancers: the effects of exercise, hypogonadism, and body weight. J Clin Endocrinol Metab 78:449–454

    Article  PubMed  CAS  Google Scholar 

  120. Grinspoon S, Miller K, Coyle C, Krempin J, Armstrong C, Pitts S, Herzog D, Klibanski A (1999) Severity of osteopenia in estrogen-deficient women with anorexia nervosa and hypothalamic amenorrhea. J Clin Endocrinol Metab 84:2049–2055

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Germán Vicente-Rodríguez.

About this article

Cite this article

Vicente-Rodríguez, G., Ezquerra, J., Mesana, M.I. et al. Independent and combined effect of nutrition and exercise on bone mass development. J Bone Miner Metab 26, 416–424 (2008). https://doi.org/10.1007/s00774-007-0846-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-007-0846-9

Key words

Navigation