Short-term and long-term site-specific effects of tennis playing on trabecular and cortical bone at the distal radius

Abstract

Mechanical loading during growth magnifies the normal increase in bone diameter occurring in long bone shafts, but the response to loading in long bone ends remains unclear. The aim of the study was to investigate the effects of tennis playing during growth at the distal radius, comparing the bone response at trabecular and cortical skeletal sites. The influence of training duration was examined by studying bone response in short-term (children) and long-term (young adults) perspectives. Bone area, bone mineral content (BMC), and bone mineral density (BMD) of the radius were measured by DXA in 28 young (11.6 ± 1.4 years old) and 47 adult tennis players (22.3 ± 2.7 years old), and 70 age-matched controls (12 children, 58 adults) at three sites: the ultradistal region (trabecular), the mid-distal region, and the third-distal region (cortical). At the ultradistal radius, young and adult tennis players displayed similar side-to-side differences, the asymmetry in BMC reaching 16.3% and 13.8%, respectively (P < 0.0001). At the mid- and third-distal radius, the asymmetry was much greater in adults than in children (P < 0.0001) for all the bone parameters (mid-distal radius, +6.6% versus +15.6%; third-distal radius, +6.9% versus +13.3%, for BMC). Epiphyseal bone enduring longitudinal growth showed a great capacity to respond to mechanical loading in children. Prolonging tennis playing into adulthood was associated with further increase in bone mineralization at diaphyseal skeletal sites. These findings illustrate the benefits of practicing impact-loading sports during growth and maintaining physical activity into adulthood to enhance bone mass accrual and prevent fractures later in life.

This is a preview of subscription content, access via your institution.

References

  1. 1

    SL Bass (2000) ArticleTitleThe prepubertal years: a uniquely opportune stage of growth when the skeleton is most responsive to exercise? Sports Med 30 73–78 Occurrence Handle10966147 Occurrence Handle1:STN:280:DC%2BD3M%2Fmt1KgsQ%3D%3D Occurrence Handle10.2165/00007256-200030020-00001

    PubMed  CAS  Article  Google Scholar 

  2. 2

    M Bradney G Pearce G Naughton C Sullivan S Bass T Beck J Carlson E Seeman (1998) ArticleTitleModerate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density, and bone strength: a controlled prospective study J Bone Miner Res 13 1814–1821 Occurrence Handle9844098 Occurrence Handle1:STN:280:DyaK1M%2Fmt1WrtA%3D%3D Occurrence Handle10.1359/jbmr.1998.13.12.1814

    PubMed  CAS  Article  Google Scholar 

  3. 3

    MR Forwood DB Burr (1993) ArticleTitlePhysical activity and bone mass: exercises in futility? Bone Miner 21 89–112 Occurrence Handle8358253 Occurrence Handle1:STN:280:DyaK3szmsVaiuw%3D%3D Occurrence Handle10.1016/S0169-6009(08)80012-8

    PubMed  CAS  Article  Google Scholar 

  4. 4

    KJ MacKelvie KM Khan HA McKay (2002) ArticleTitleIs there a critical period for bone response to weight-bearing exercise in children and adolescents? a systematic review Br J Sports Med 36 250–257 Occurrence Handle12145113 Occurrence Handle1:STN:280:DC%2BD38zpsFylug%3D%3D Occurrence Handle10.1136/bjsm.36.4.250

    PubMed  CAS  Article  Google Scholar 

  5. 5

    AM Parfitt (1994) ArticleTitleThe two faces of growth: benefits and risks to bone integrity Osteoporos Int 4 382–398 Occurrence Handle7696836 Occurrence Handle1:STN:280:DyaK2M3htVyktQ%3D%3D Occurrence Handle10.1007/BF01622201

    PubMed  CAS  Article  Google Scholar 

  6. 6

    JCY Cheng N Maffulli SSSF Leung WTK Lee JTF Lau KM Chan (1999) ArticleTitleAxial and peripheral bone mineral acquisition: a 3-year longitudinal study in chinese adolescents Eur J Pediatr 158 506–512 Occurrence Handle10378402 Occurrence Handle1:STN:280:DyaK1MzgsVOntQ%3D%3D Occurrence Handle10.1007/s004310051131

    PubMed  CAS  Article  Google Scholar 

  7. 7

    P Kannus H Haapasalo H Sievänen P Oja I Vuori (1994) ArticleTitleThe site-specific effects of long-term unilateral activity on bone mineral density and content Bone 15 279–284 Occurrence Handle8068448 Occurrence Handle1:STN:280:DyaK2czkslCquw%3D%3D Occurrence Handle10.1016/8756-3282(94)90289-5

    PubMed  CAS  Article  Google Scholar 

  8. 8

    N Ashizawa K Nonaka S Michikami T Mizuki H Amagai K Tokuyama M Suzuki (1999) ArticleTitleTomographical description of tennis-loaded radius: reciprocal relation between bone size and volumetric BMD J Appl Physiol 86 1347–1351 Occurrence Handle10194221 Occurrence Handle1:STN:280:DyaK1M3htVehtw%3D%3D

    PubMed  CAS  Google Scholar 

  9. 9

    H Haapasalo S Kontulainen H Sievänen P Kannus M Järvinen I Vuori (2000) ArticleTitleExercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: a peripheral quantitative computed tomography study of the upper arms of male tennis players Bone 27 351–357 Occurrence Handle10962345 Occurrence Handle1:STN:280:DC%2BD3cvpt1WitQ%3D%3D Occurrence Handle10.1016/S8756-3282(00)00331-8

    PubMed  CAS  Article  Google Scholar 

  10. 10

    S Kontulainen H Sievänen P Kannus M Pasanen I Vuori (2002) ArticleTitleEffect of long-term impact-loading on mass, size, and estimated strength of humerus and radius of female racquet-sports players: a peripheral quantitative computed tomography study between young and old starters and controls J Bone Miner Res 17 2281–2289 Occurrence Handle12469923 Occurrence Handle10.1359/jbmr.2002.17.12.2281

    PubMed  Article  Google Scholar 

  11. 11

    N Nara-Ashizawa LJ Liu T Higuchi K Tokuyama K Hayashi Y Shirasaki H Amagai S Saitoh (2002) ArticleTitleParadoxical adaptation of mature radius to unilateral use in tennis playing Bone 30 619–623 Occurrence Handle11934655 Occurrence Handle1:STN:280:DC%2BD383gtFyitw%3D%3D Occurrence Handle10.1016/S8756-3282(01)00707-4

    PubMed  CAS  Article  Google Scholar 

  12. 12

    G Ducher D Courteix S Même C Magni JF Viala CL Benhamou (2005) ArticleTitleBone geometry in response to long-term tennis playing and its relationship with muscle volume: a quantitative magnetic resonance imaging study in tennis players Bone 37 457–466 Occurrence Handle16099730 Occurrence Handle1:STN:280:DC%2BD2Mvps1Kqtg%3D%3D Occurrence Handle10.1016/j.bone.2005.05.014

    PubMed  CAS  Article  Google Scholar 

  13. 13

    SL Bass L Saxon RM Daly CH Turner AG Robling E Seeman S Stuckey (2002) ArticleTitleThe effect of mechanical loading on the size and shape of bone in pre-, peri-, and postpubertal girls: a study in tennis players J Bone Miner Res 17 2274–2280 Occurrence Handle12469922 Occurrence Handle1:STN:280:DC%2BD38jgsl2nuw%3D%3D Occurrence Handle10.1359/jbmr.2002.17.12.2274

    PubMed  CAS  Article  Google Scholar 

  14. 14

    E Seeman (1997) ArticleTitleFrom density to structure: growing up and growing old on the surfaces of bone J Bone Miner Res 12 509–521 Occurrence Handle9101362 Occurrence Handle1:STN:280:DyaK2s3ls1Sgsw%3D%3D Occurrence Handle10.1359/jbmr.1997.12.4.509

    PubMed  CAS  Article  Google Scholar 

  15. 15

    JCY Cheng WY Shen (1993) ArticleTitleLimb fracture pattern in different pediatric age groups: a study of 3,350 children J Orthop Trauma 7 15–22 Occurrence Handle8433194 Occurrence Handle1:STN:280:DyaK3s7mtl2nug%3D%3D Occurrence Handle10.1097/00005131-199302000-00004

    PubMed  CAS  Article  Google Scholar 

  16. 16

    C Cooper EM Dennison HGM Leufkens N Bishop TP van Staa (2004) ArticleTitleEpidemiology of childhood fractures in Britain: a study using the General Practice Research Database J Bone Miner Res 19 1976–1981 Occurrence Handle15537440 Occurrence Handle10.1359/JBMR.040902

    PubMed  Article  Google Scholar 

  17. 17

    RA Lyons AM Delahunty D Kraus M Heaven M McCabe H Allen P Nash (1999) ArticleTitleChildren's fractures: a population based study Injury Prev 5 129–132 Occurrence Handle1:STN:280:DyaK1MzhtlKisw%3D%3D Occurrence Handle10.1136/ip.5.2.129

    CAS  Article  Google Scholar 

  18. 18

    TW O'Neill DK Roy (2005) ArticleTitleHow many people develop fractures with what outcome? Best Pract Res Clin Rheumatol 19 879–895 Occurrence Handle16301185

    PubMed  Google Scholar 

  19. 19

    IE Jones RW Taylor SM Williams PJ Manning A Goulding (2002) ArticleTitleFour-year gain in bone mineral in girls with and without past forearms fractures: a DXA study J Bone Miner Res 17 1065–1072 Occurrence Handle12054162 Occurrence Handle10.1359/jbmr.2002.17.6.1065

    PubMed  Article  Google Scholar 

  20. 20

    WW Greulich SI Pyle (1959) Radiographic Atlas of Skeletal Development of the Hand and Wrist Stanford University Press Stanford

    Google Scholar 

  21. 21

    RL Mirwald ADG Baxter-Jones DA Bailey GP Beunen (2002) ArticleTitleAn assessment of maturity from anthropometric measurements Med Sci Sports Exerc 34 689–694 Occurrence Handle11932580 Occurrence Handle10.1097/00005768-200204000-00020

    PubMed  Article  Google Scholar 

  22. 22

    C-C Glüer G Blake Y Lu BA Blunt M Jergas H Genant (1995) ArticleTitleAccurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques Osteoporos Int 5 262–270 Occurrence Handle7492865 Occurrence Handle10.1007/BF01774016

    PubMed  Article  Google Scholar 

  23. 23

    RA Faulkner CS Houston DA Bailey DT Drinkwater HA McKay AA Wilkinson (1993) ArticleTitleComparison of bone mineral content and bone mineral density between dominant and nondominant limbs in children 8–16 years of age Am J Hum Biol 5 491–499 Occurrence Handle10.1002/ajhb.1310050413

    Article  Google Scholar 

  24. 24

    KL Proctor WC Adams JD Shaffrath MD Van Loan (2002) ArticleTitleUpper-limb bone mineral density of female collegiate gymnasts versus controls Med Sci Sports Exerc 34 1830–1835 Occurrence Handle12439090 Occurrence Handle10.1097/00005768-200211000-00021

    PubMed  Article  Google Scholar 

  25. 25

    J Walters WWK Koo A Bush M Hammami (1998) ArticleTitleEffect of hand dominance on bone mass measurement in sedentary individuals J Clin Densitom 1 359–367 Occurrence Handle15304882 Occurrence Handle1:STN:280:DC%2BD2cvgtFekuw%3D%3D Occurrence Handle10.1385/JCD:1:4:359

    PubMed  CAS  Article  Google Scholar 

  26. 26

    P Kannus H Haapasalo M Sankelo H Sievänen M Pasanen A Heinonen P Oja I Vuori (1995) ArticleTitleEffect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players Ann Intern Med 123 27–31 Occurrence Handle7762910 Occurrence Handle1:STN:280:DyaK2M3otlWlsg%3D%3D

    PubMed  CAS  Google Scholar 

  27. 27

    H Haapasalo H Sievänen P Kannus A Heinonen P Oja I Vuori (1996) ArticleTitleDimensions and estimated mechanical characteristics of the humerus after long-term tennis loading J Bone Miner Res 11 864–872 Occurrence Handle8725185 Occurrence Handle1:STN:280:DyaK28zmtl2msQ%3D%3D

    PubMed  CAS  Google Scholar 

  28. 28

    H Haapasalo P Kannus H Sievanen M Pasanen K Uusi-Rasi A Heinonen P Oja I Vuori (1998) ArticleTitleEffect of long-term unilateral activity on bone mineral density of female junior tennis players J Bone Miner Res 13 310–319 Occurrence Handle9495526 Occurrence Handle1:STN:280:DyaK1c7lsV2itg%3D%3D Occurrence Handle10.1359/jbmr.1998.13.2.310

    PubMed  CAS  Article  Google Scholar 

  29. 29

    RA Schlenker WW Von Seggen (1976) ArticleTitleThe distribution of cortical and trabecular bone mass along the lengths of the radius and ulna and the implications for in vivo bone mass measurements Calcif Tissue Int 20 41–52 Occurrence Handle1:STN:280:DyaE287mt1Kjtw%3D%3D

    CAS  Google Scholar 

  30. 30

    MA Petit HA McKay KJ MacKelvie A Heinonen KM Kahn TJ Beck (2002) ArticleTitleA randomized school-based jumping intervention confers site and maturity-specific benefits on bone structural properties in girls: a hip structural analysis study J Bone Miner Res 17 363–372 Occurrence Handle11874228 Occurrence Handle1:STN:280:DC%2BD387ksVartw%3D%3D Occurrence Handle10.1359/jbmr.2002.17.3.363

    PubMed  CAS  Article  Google Scholar 

  31. 31

    A Heinonen H Sievänen P Kannus P Oja M Pasanen I Vuori (2000) ArticleTitleHigh-impact exercise and bones of growing girls: a 9-month controlled trial Osteoporos Int 11 1010–1017 Occurrence Handle11256891 Occurrence Handle1:STN:280:DC%2BD3M7osVKjsQ%3D%3D Occurrence Handle10.1007/s001980070021

    PubMed  CAS  Article  Google Scholar 

  32. 32

    M Huonker A Schmidt Schmidt-Trucksäss D Grathwohl J Keul (2003) ArticleTitleSize and blood flow of central and peripheral arteries in highly trained able-bodied and disabled athletes J Appl Physiol 95 685–691 Occurrence Handle12433857 Occurrence Handle1:STN:280:DC%2BD3szitVOltg%3D%3D

    PubMed  CAS  Google Scholar 

  33. 33

    MK Karlsson (2003) ArticleTitleThe skeleton in a long-term perspective: are exercise induced benefits eroded by time? J Musculoskel Neuronal Interact 3 348–351 Occurrence Handle1:STN:280:DC%2BD2M7islOhtw%3D%3D

    CAS  Google Scholar 

  34. 34

    H Haapasalo P Kannus H Sievänen A Heinonen P Oja I Vuori (1994) ArticleTitleLong-term unilateral loading and bone mineral density and content in female squash players Calcif Tissue Int 54 249–255 Occurrence Handle8062139 Occurrence Handle1:STN:280:DyaK2czktVCntw%3D%3D Occurrence Handle10.1007/BF00295946

    PubMed  CAS  Article  Google Scholar 

  35. 35

    JA Kanis F Borgstrom C De Laet H Johansson O Johnell B Jonsson A Oden N Zethraeus B Pfleger N Khaltaev (2005) ArticleTitleAssessment of fracture risk Osteoporos Int 16 581–589 Occurrence Handle15616758 Occurrence Handle10.1007/s00198-004-1780-5

    PubMed  Article  Google Scholar 

  36. 36

    HM Frost (2002) ArticleTitleEmerging view about “osteoporosis,” bone health, strength, fragility, and their determinants J Bone Miner Metab 20 319–325 Occurrence Handle12434158 Occurrence Handle10.1007/s007740200046

    PubMed  Article  Google Scholar 

  37. 37

    W Sum Siu L Qin K Sui Leung (2003) ArticleTitlepQCT bone strength index may serve as a better predictor than bone mineral density for long bone breaking strength J Bone Miner Metab 21 316–322 Occurrence Handle10.1007/s00774-003-0427-5

    Article  Google Scholar 

  38. 38

    H Hagino K Yamamoto H Ohshiro T Nose (2000) ArticleTitleIncreasing incidence of distal radius fractures in Japanese children and adolescents J Orthop Sci 5 356–360 Occurrence Handle10982684 Occurrence Handle1:STN:280:DC%2BD3M%2FitVehtQ%3D%3D Occurrence Handle10.1007/s007760070043

    PubMed  CAS  Article  Google Scholar 

  39. 39

    R Rizzoli JP Bonjour SL Ferrari (2001) ArticleTitleOsteoporosis, genetics and hormones J Mol Endocrinol 26 79–94 Occurrence Handle11241160 Occurrence Handle1:CAS:528:DC%2BD3MXis1KlsrY%3D Occurrence Handle10.1677/jme.0.0260079

    PubMed  CAS  Article  Google Scholar 

  40. 40

    CJ Blimkie J Lefevre GP Beunen R Renson J Dequeker P Van Damme (1993) ArticleTitleFractures, physical activity, and growth velocity in adolescent Belgian boys Med Sci Sports Exerc 25 801–808 Occurrence Handle8350702 Occurrence Handle1:STN:280:DyaK3szlsVSmtg%3D%3D Occurrence Handle10.1249/00005768-199307000-00008

    PubMed  CAS  Article  Google Scholar 

  41. 41

    H Naka M Iki A Morita Y Ikeda (2005) ArticleTitleEffects of pubertal development, height, weight, and grip strength on the bone mineral density of the lumbar spine and hip in peripubertal Japanese children: Kyoto kids increase density in the skeleton study (Kyoto KIDS study) J Bone Miner Metab 23 463–469 Occurrence Handle16261453 Occurrence Handle10.1007/s00774-005-0629-0

    PubMed  Article  Google Scholar 

  42. 42

    TL Järvinen P Kannus H Sievänen (1999) ArticleTitleHave the DXA-based exercise studies seriously underestimated the effects of mechanical loading on bone? J Bone Miner Res 14 1634–1635 Occurrence Handle10469294 Occurrence Handle10.1359/jbmr.1999.14.9.1634

    PubMed  Article  Google Scholar 

  43. 43

    A Prentice TJ Parsons TJ Cole (1994) ArticleTitleUncritical use of bone mineral density in absorptiometry may lead to size-related artifacts in the identification of bone mineral determinants Am J Clin Nutr 60 837–842 Occurrence Handle7985621 Occurrence Handle1:STN:280:DyaK2M%2Fns12hsA%3D%3D

    PubMed  CAS  Google Scholar 

  44. 44

    CB Ruff A Walker E Trinkaus (1994) ArticleTitlePostcranial robusticity in Homo. III: Ontogeny Am J Phys Anthropol 93 35–54 Occurrence Handle8141241 Occurrence Handle1:STN:280:DyaK2c7ovFKlug%3D%3D Occurrence Handle10.1002/ajpa.1330930103

    PubMed  CAS  Article  Google Scholar 

  45. 45

    CH Turner DB Burr (1993) ArticleTitleBasic biomechanical measurements of bone: a tutorial Bone 14 595–608 Occurrence Handle8274302 Occurrence Handle1:STN:280:DyaK2c7gtVSjug%3D%3D Occurrence Handle10.1016/8756-3282(93)90081-K

    PubMed  CAS  Article  Google Scholar 

  46. 46

    CJR Blimkie W Högler (2003) ArticleTitleMuscle-bone mutualism, mechanical loading and the mechanostat theory: a pediatric perspective Rev Port Cienc Desporto 3 22–25

    Google Scholar 

  47. 47

    DB Burr (1997) ArticleTitleMuscle strength, bone mass, and age-related bone loss J Bone Miner Res 12 1547–1553 Occurrence Handle9333114 Occurrence Handle1:STN:280:DyaK2svnt1antg%3D%3D Occurrence Handle10.1359/jbmr.1997.12.10.1547

    PubMed  CAS  Article  Google Scholar 

  48. 48

    SW Herring (1994) Development of functional interactions between skeletal and muscular systems BK Hall (Eds) Differentiation and Morphogenesis of Bone CRC Press Boca Raton 165–191

    Google Scholar 

  49. 49

    J Rittweger G Beller J Ehrig C Jung U Koch J Ramolla F Schmidt D Newitt S Majumdar H Schiessl D Felsenberg (2000) ArticleTitleBone-muscle strength indices for the human lower leg Bone 27 319–326 Occurrence Handle10913929 Occurrence Handle1:STN:280:DC%2BD3cvisVCksg%3D%3D Occurrence Handle10.1016/S8756-3282(00)00327-6

    PubMed  CAS  Article  Google Scholar 

  50. 50

    E Schoenau B Schwahn F Rauch (2002) ArticleTitleThe muscle-bone relationship: methods and management: perspectives in glycogen storage disease Eur J Pediatr 161 S50–S52 Occurrence Handle10.1007/s00431-002-1003-z

    Article  Google Scholar 

  51. 51

    TLN Järvinen P Kannus I Pajamäki T Vuohelainen J Tuukkanen M Järvinen H Sievänen (2003) ArticleTitleEstrogen deposits extra mineral into bones of female rats in puberty, but simultaneously seems to suppress the responsiveness of female skeleton to mechanical loading Bone 32 642–651 Occurrence Handle12810171 Occurrence Handle10.1016/S8756-3282(03)00100-5 Occurrence Handle1:CAS:528:DC%2BD3sXks1WksLs%3D

    PubMed  Article  CAS  Google Scholar 

  52. 52

    J Iwamoto C Shimamura T Takeda H Abe S Ichimura Y Sato Y Toyama (2004) ArticleTitleEffects of treadmill exercise on bone mass, bone metabolism, and calciotropic hormones in young growing rats J Bone Miner Metab 22 26–31 Occurrence Handle14691683 Occurrence Handle1:CAS:528:DC%2BD3sXhtVSjsb3M Occurrence Handle10.1007/s00774-003-0443-5

    PubMed  CAS  Article  Google Scholar 

  53. 53

    S Bourrin S Palle R Pupier L Vico C Alexandre (1995) ArticleTitleEffects of physical training on bone adaptation in three zones of the rat tibia J Bone Miner Res 10 1745–1752 Occurrence Handle8592952 Occurrence Handle1:STN:280:DyaK287lsFKmsg%3D%3D Occurrence Handle10.1002/jbmr.5650101118

    PubMed  CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gaële Ducher.

About this article

Cite this article

Ducher, G., Tournaire, N., Meddahi-Pellé, A. et al. Short-term and long-term site-specific effects of tennis playing on trabecular and cortical bone at the distal radius. J Bone Miner Metab 24, 484–490 (2006). https://doi.org/10.1007/s00774-006-0710-3

Download citation

Key words

  • growth
  • unilateral loading
  • child
  • bone mineral density
  • forearm