Advertisement

Journal of Bone and Mineral Metabolism

, Volume 24, Issue 6, pp 484–490 | Cite as

Short-term and long-term site-specific effects of tennis playing on trabecular and cortical bone at the distal radius

  • Gaële DucherEmail author
  • Nicolas Tournaire
  • Anne Meddahi-Pellé
  • Claude-Laurent Benhamou
  • Daniel Courteix
ORIGINAL ARTICLE

Abstract

Mechanical loading during growth magnifies the normal increase in bone diameter occurring in long bone shafts, but the response to loading in long bone ends remains unclear. The aim of the study was to investigate the effects of tennis playing during growth at the distal radius, comparing the bone response at trabecular and cortical skeletal sites. The influence of training duration was examined by studying bone response in short-term (children) and long-term (young adults) perspectives. Bone area, bone mineral content (BMC), and bone mineral density (BMD) of the radius were measured by DXA in 28 young (11.6 ± 1.4 years old) and 47 adult tennis players (22.3 ± 2.7 years old), and 70 age-matched controls (12 children, 58 adults) at three sites: the ultradistal region (trabecular), the mid-distal region, and the third-distal region (cortical). At the ultradistal radius, young and adult tennis players displayed similar side-to-side differences, the asymmetry in BMC reaching 16.3% and 13.8%, respectively (P < 0.0001). At the mid- and third-distal radius, the asymmetry was much greater in adults than in children (P < 0.0001) for all the bone parameters (mid-distal radius, +6.6% versus +15.6%; third-distal radius, +6.9% versus +13.3%, for BMC). Epiphyseal bone enduring longitudinal growth showed a great capacity to respond to mechanical loading in children. Prolonging tennis playing into adulthood was associated with further increase in bone mineralization at diaphyseal skeletal sites. These findings illustrate the benefits of practicing impact-loading sports during growth and maintaining physical activity into adulthood to enhance bone mass accrual and prevent fractures later in life.

Key words

growth unilateral loading child bone mineral density forearm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bass, SL 2000The prepubertal years: a uniquely opportune stage of growth when the skeleton is most responsive to exercise?Sports Med307378PubMedCrossRefGoogle Scholar
  2. 2.
    Bradney, M, Pearce, G, Naughton, G, Sullivan, C, Bass, S, Beck, T, Carlson, J, Seeman, E 1998Moderate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density, and bone strength: a controlled prospective studyJ Bone Miner Res1318141821PubMedCrossRefGoogle Scholar
  3. 3.
    Forwood, MR, Burr, DB 1993Physical activity and bone mass: exercises in futility?Bone Miner2189112PubMedCrossRefGoogle Scholar
  4. 4.
    MacKelvie, KJ, Khan, KM, McKay, HA 2002Is there a critical period for bone response to weight-bearing exercise in children and adolescents? a systematic reviewBr J Sports Med36250257PubMedCrossRefGoogle Scholar
  5. 5.
    Parfitt, AM 1994The two faces of growth: benefits and risks to bone integrityOsteoporos Int4382398PubMedCrossRefGoogle Scholar
  6. 6.
    Cheng, JCY, Maffulli, N, Leung, SSSF, Lee, WTK, Lau, JTF, Chan, KM 1999Axial and peripheral bone mineral acquisition: a 3-year longitudinal study in chinese adolescentsEur J Pediatr158506512PubMedCrossRefGoogle Scholar
  7. 7.
    Kannus, P, Haapasalo, H, Sievänen, H, Oja, P, Vuori, I 1994The site-specific effects of long-term unilateral activity on bone mineral density and contentBone15279284PubMedCrossRefGoogle Scholar
  8. 8.
    Ashizawa, N, Nonaka, K, Michikami, S, Mizuki, T, Amagai, H, Tokuyama, K, Suzuki, M 1999Tomographical description of tennis-loaded radius: reciprocal relation between bone size and volumetric BMDJ Appl Physiol8613471351PubMedGoogle Scholar
  9. 9.
    Haapasalo, H, Kontulainen, S, Sievänen, H, Kannus, P, Järvinen, M, Vuori, I 2000Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: a peripheral quantitative computed tomography study of the upper arms of male tennis playersBone27351357PubMedCrossRefGoogle Scholar
  10. 10.
    Kontulainen, S, Sievänen, H, Kannus, P, Pasanen, M, Vuori, I 2002Effect of long-term impact-loading on mass, size, and estimated strength of humerus and radius of female racquet-sports players: a peripheral quantitative computed tomography study between young and old starters and controlsJ Bone Miner Res1722812289PubMedCrossRefGoogle Scholar
  11. 11.
    Nara-Ashizawa, N, Liu, LJ, Higuchi, T, Tokuyama, K, Hayashi, K, Shirasaki, Y, Amagai, H, Saitoh, S 2002Paradoxical adaptation of mature radius to unilateral use in tennis playingBone30619623PubMedCrossRefGoogle Scholar
  12. 12.
    Ducher, G, Courteix, D, Même, S, Magni, C, Viala, JF, Benhamou, CL 2005Bone geometry in response to long-term tennis playing and its relationship with muscle volume: a quantitative magnetic resonance imaging study in tennis playersBone37457466PubMedCrossRefGoogle Scholar
  13. 13.
    Bass, SL, Saxon, L, Daly, RM, Turner, CH, Robling, AG, Seeman, E, Stuckey, S 2002The effect of mechanical loading on the size and shape of bone in pre-, peri-, and postpubertal girls: a study in tennis playersJ Bone Miner Res1722742280PubMedCrossRefGoogle Scholar
  14. 14.
    Seeman, E 1997From density to structure: growing up and growing old on the surfaces of boneJ Bone Miner Res12509521PubMedCrossRefGoogle Scholar
  15. 15.
    Cheng, JCY, Shen, WY 1993Limb fracture pattern in different pediatric age groups: a study of 3,350 childrenJ Orthop Trauma71522PubMedCrossRefGoogle Scholar
  16. 16.
    Cooper, C, Dennison, EM, Leufkens, HGM, Bishop, N, van Staa, TP 2004Epidemiology of childhood fractures in Britain: a study using the General Practice Research DatabaseJ Bone Miner Res1919761981PubMedCrossRefGoogle Scholar
  17. 17.
    Lyons, RA, Delahunty, AM, Kraus, D, Heaven, M, McCabe, M, Allen, H, Nash, P 1999Children's fractures: a population based studyInjury Prev5129132CrossRefGoogle Scholar
  18. 18.
    O'Neill, TW, Roy, DK 2005How many people develop fractures with what outcome?Best Pract Res Clin Rheumatol19879895PubMedGoogle Scholar
  19. 19.
    Jones, IE, Taylor, RW, Williams, SM, Manning, PJ, Goulding, A 2002Four-year gain in bone mineral in girls with and without past forearms fractures: a DXA studyJ Bone Miner Res1710651072PubMedCrossRefGoogle Scholar
  20. 20.
    Greulich, WW, Pyle, SI 1959Radiographic Atlas of Skeletal Development of the Hand and WristStanford University PressStanfordGoogle Scholar
  21. 21.
    Mirwald, RL, Baxter-Jones, ADG, Bailey, DA, Beunen, GP 2002An assessment of maturity from anthropometric measurementsMed Sci Sports Exerc34689694PubMedCrossRefGoogle Scholar
  22. 22.
    Glüer, C-C, Blake, G, Lu, Y, Blunt, BA, Jergas, M, Genant, H 1995Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniquesOsteoporos Int5262270PubMedCrossRefGoogle Scholar
  23. 23.
    Faulkner, RA, Houston, CS, Bailey, DA, Drinkwater, DT, McKay, HA, Wilkinson, AA 1993Comparison of bone mineral content and bone mineral density between dominant and nondominant limbs in children 8–16 years of ageAm J Hum Biol5491499CrossRefGoogle Scholar
  24. 24.
    Proctor, KL, Adams, WC, Shaffrath, JD, Van Loan, MD 2002Upper-limb bone mineral density of female collegiate gymnasts versus controlsMed Sci Sports Exerc3418301835PubMedCrossRefGoogle Scholar
  25. 25.
    Walters, J, Koo, WWK, Bush, A, Hammami, M 1998Effect of hand dominance on bone mass measurement in sedentary individualsJ Clin Densitom1359367PubMedCrossRefGoogle Scholar
  26. 26.
    Kannus, P, Haapasalo, H, Sankelo, M, Sievänen, H, Pasanen, M, Heinonen, A, Oja, P, Vuori, I 1995Effect of starting age of physical activity on bone mass in the dominant arm of tennis and squash playersAnn Intern Med1232731PubMedGoogle Scholar
  27. 27.
    Haapasalo, H, Sievänen, H, Kannus, P, Heinonen, A, Oja, P, Vuori, I 1996Dimensions and estimated mechanical characteristics of the humerus after long-term tennis loadingJ Bone Miner Res11864872PubMedGoogle Scholar
  28. 28.
    Haapasalo, H, Kannus, P, Sievanen, H, Pasanen, M, Uusi-Rasi, K, Heinonen, A, Oja, P, Vuori, I 1998Effect of long-term unilateral activity on bone mineral density of female junior tennis playersJ Bone Miner Res13310319PubMedCrossRefGoogle Scholar
  29. 29.
    Schlenker, RA, Von Seggen, WW 1976The distribution of cortical and trabecular bone mass along the lengths of the radius and ulna and the implications for in vivo bone mass measurementsCalcif Tissue Int204152Google Scholar
  30. 30.
    Petit, MA, McKay, HA, MacKelvie, KJ, Heinonen, A, Kahn, KM, Beck, TJ 2002A randomized school-based jumping intervention confers site and maturity-specific benefits on bone structural properties in girls: a hip structural analysis studyJ Bone Miner Res17363372PubMedCrossRefGoogle Scholar
  31. 31.
    Heinonen, A, Sievänen, H, Kannus, P, Oja, P, Pasanen, M, Vuori, I 2000High-impact exercise and bones of growing girls: a 9-month controlled trialOsteoporos Int1110101017PubMedCrossRefGoogle Scholar
  32. 32.
    Huonker, M, Schmidt, A, Schmidt-Trucksäss, , Grathwohl, D, Keul, J 2003Size and blood flow of central and peripheral arteries in highly trained able-bodied and disabled athletesJ Appl Physiol95685691PubMedGoogle Scholar
  33. 33.
    Karlsson, MK 2003The skeleton in a long-term perspective: are exercise induced benefits eroded by time?J Musculoskel Neuronal Interact3348351Google Scholar
  34. 34.
    Haapasalo, H, Kannus, P, Sievänen, H, Heinonen, A, Oja, P, Vuori, I 1994Long-term unilateral loading and bone mineral density and content in female squash playersCalcif Tissue Int54249255PubMedCrossRefGoogle Scholar
  35. 35.
    Kanis, JA, Borgstrom, F, De Laet, C, Johansson, H, Johnell, O, Jonsson, B, Oden, A, Zethraeus, N, Pfleger, B, Khaltaev, N 2005Assessment of fracture riskOsteoporos Int16581589PubMedCrossRefGoogle Scholar
  36. 36.
    Frost, HM 2002Emerging view about “osteoporosis,” bone health, strength, fragility, and their determinantsJ Bone Miner Metab20319325PubMedCrossRefGoogle Scholar
  37. 37.
    Sum Siu, W, Qin, L, Sui Leung, K 2003pQCT bone strength index may serve as a better predictor than bone mineral density for long bone breaking strengthJ Bone Miner Metab21316322CrossRefGoogle Scholar
  38. 38.
    Hagino, H, Yamamoto, K, Ohshiro, H, Nose, T 2000Increasing incidence of distal radius fractures in Japanese children and adolescentsJ Orthop Sci5356360PubMedCrossRefGoogle Scholar
  39. 39.
    Rizzoli, R, Bonjour, JP, Ferrari, SL 2001Osteoporosis, genetics and hormonesJ Mol Endocrinol267994PubMedCrossRefGoogle Scholar
  40. 40.
    Blimkie, CJ, Lefevre, J, Beunen, GP, Renson, R, Dequeker, J, Van Damme, P 1993Fractures, physical activity, and growth velocity in adolescent Belgian boysMed Sci Sports Exerc25801808PubMedCrossRefGoogle Scholar
  41. 41.
    Naka, H, Iki, M, Morita, A, Ikeda, Y 2005Effects of pubertal development, height, weight, and grip strength on the bone mineral density of the lumbar spine and hip in peripubertal Japanese children: Kyoto kids increase density in the skeleton study (Kyoto KIDS study)J Bone Miner Metab23463469PubMedCrossRefGoogle Scholar
  42. 42.
    Järvinen, TL, Kannus, P, Sievänen, H 1999Have the DXA-based exercise studies seriously underestimated the effects of mechanical loading on bone?J Bone Miner Res1416341635PubMedCrossRefGoogle Scholar
  43. 43.
    Prentice, A, Parsons, TJ, Cole, TJ 1994Uncritical use of bone mineral density in absorptiometry may lead to size-related artifacts in the identification of bone mineral determinantsAm J Clin Nutr60837842PubMedGoogle Scholar
  44. 44.
    Ruff, CB, Walker, A, Trinkaus, E 1994Postcranial robusticity in Homo. III: OntogenyAm J Phys Anthropol933554PubMedCrossRefGoogle Scholar
  45. 45.
    Turner, CH, Burr, DB 1993Basic biomechanical measurements of bone: a tutorialBone14595608PubMedCrossRefGoogle Scholar
  46. 46.
    Blimkie, CJR, Högler, W 2003Muscle-bone mutualism, mechanical loading and the mechanostat theory: a pediatric perspectiveRev Port Cienc Desporto32225Google Scholar
  47. 47.
    Burr, DB 1997Muscle strength, bone mass, and age-related bone lossJ Bone Miner Res1215471553PubMedCrossRefGoogle Scholar
  48. 48.
    Herring, SW 1994Development of functional interactions between skeletal and muscular systemsHall, BK eds. Differentiation and Morphogenesis of BoneCRC PressBoca Raton165191Google Scholar
  49. 49.
    Rittweger, J, Beller, G, Ehrig, J, Jung, C, Koch, U, Ramolla, J, Schmidt, F, Newitt, D, Majumdar, S, Schiessl, H, Felsenberg, D 2000Bone-muscle strength indices for the human lower legBone27319326PubMedCrossRefGoogle Scholar
  50. 50.
    Schoenau, E, Schwahn, B, Rauch, F 2002The muscle-bone relationship: methods and management: perspectives in glycogen storage diseaseEur J Pediatr161S50S52CrossRefGoogle Scholar
  51. 51.
    Järvinen, TLN, Kannus, P, Pajamäki, I, Vuohelainen, T, Tuukkanen, J, Järvinen, M, Sievänen, H 2003Estrogen deposits extra mineral into bones of female rats in puberty, but simultaneously seems to suppress the responsiveness of female skeleton to mechanical loadingBone32642651PubMedCrossRefGoogle Scholar
  52. 52.
    Iwamoto, J, Shimamura, C, Takeda, T, Abe, H, Ichimura, S, Sato, Y, Toyama, Y 2004Effects of treadmill exercise on bone mass, bone metabolism, and calciotropic hormones in young growing ratsJ Bone Miner Metab222631PubMedCrossRefGoogle Scholar
  53. 53.
    Bourrin, S, Palle, S, Pupier, R, Vico, L, Alexandre, C 1995Effects of physical training on bone adaptation in three zones of the rat tibiaJ Bone Miner Res1017451752PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 2006

Authors and Affiliations

  • Gaële Ducher
    • 1
    • 2
    Email author
  • Nicolas Tournaire
    • 1
    • 2
  • Anne Meddahi-Pellé
    • 1
  • Claude-Laurent Benhamou
    • 1
    • 2
  • Daniel Courteix
    • 1
    • 2
  1. 1.EA 3895, “Architecture du Tissu Osseux et Exercice Physique,” Faculty of Sport SciencesUniversity of OrléansOrléansFrance
  2. 2.U658, “Caractérisation du Tissu Osseux par Imagerie,” Inserm U658, CHR OrléansHôpital Porte MadeleineOrléansFrance

Personalised recommendations