Skip to main content

Advertisement

Log in

CFD study of a combined lift and drag-based novel Savonius vertical axis water turbine

  • Original article
  • Published:
Journal of Marine Science and Technology Aims and scope Submit manuscript

Abstract

The objective of the present study is harnessing hydropower by combining lift and drag-based blades in a proposed Savonius vertical axis water turbine design and analyzing its hydrodynamic performance. It is a two-bladed design with each blade having two different blade sections—an airfoil blade section for harnessing lift force and a straight blade section for harnessing drag force. The detailed hydrodynamic performance of the proposed turbine has been investigated through flow physics study for various water speeds and azimuthal angles. For more exploration of the turbine performance, the effect of the overlap ratio in the straight blade section has been studied. The performance of the proposed combined lift and drag (CLD) turbine is optimal at overlap ratio 19.21%, water velocity 0.7 m/s, in which a maximum \({C}_{p}\) of 0.139 is obtained at a tip speed ratio 0.6 with a maximum hydrodynamic torque of 0.832 N m, obtained at 135° azimuthal position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Behrouzi F, Nakisa M, Maimun A, Ahmed YM (2016) Global renewable energy and its potential in Malaysia: a review of hydrokinetic turbine technology. Renew Sustain Energy Rev 62:1270–1281. https://doi.org/10.1016/j.rser.2016.05.020

    Article  Google Scholar 

  2. Petinrin JO, Shaaban M (2015) Renewable energy for continuous energy sustainability in Malaysia. Renew Sustain Energy Rev 50:967–981. https://doi.org/10.1016/j.rser.2015.04.146

    Article  Google Scholar 

  3. Van ERH, Junior ACPB (2015) The Brazilian experience with hydrokinetic turbines. Energy Procedia 75:259–264. https://doi.org/10.1016/j.egypro.2015.07.328

    Article  Google Scholar 

  4. Yah NF, Oumer AN, Idris MS (2017) Small scale hydro-power as a source of renewable energy in Malaysia: a review. Renew Sustain Energy Rev 72:228–239. https://doi.org/10.1016/j.rser.2017.01.068

    Article  Google Scholar 

  5. Ebrahimpour M, Shafaghat R, Alamian R, Safdari Shadloo M (2019) Numerical investigation of the Savonius vertical axis wind turbine and evaluation of the effect of the overlap parameter in both horizontal and vertical directions on its performance. Symmetry (Basel) 11:821. https://doi.org/10.3390/sym11060821

    Article  Google Scholar 

  6. Gupta R, Biswas A, Sharma KK (2008) Comparative study of a three-bucket Savonius rotor with a combined three-bucket Savonius-three-bladed Darrieus rotor. Renew Energy 33:1974–1981. https://doi.org/10.1016/j.renene.2007.12.008

    Article  Google Scholar 

  7. Debnath BK, Biswas A, Gupta R (2009) Computational fluid dynamics analysis of a combined three-bucket Savonius and three-bladed Darrieus rotor at various overlap conditions. J Renew Sustain Energy 1:033110. https://doi.org/10.1063/1.3152431

    Article  Google Scholar 

  8. Gupta R, Biswas A (2011) CFD analysis of flow physics and aerodynamic performance of a combined three-bucket Savonius and three-bladed darrieus turbine. Int J Green Energy 8:209–233. https://doi.org/10.1080/15435075.2010.548541

    Article  Google Scholar 

  9. Sharma KK, Biswas A, Gupta R (2013) Performance measurement of a three-bladed combined Darrieus-Savonius rotor. Int J Renew Energy Res 3:885–891

    Google Scholar 

  10. Sharma KK, Gupta R, Biswas A (2014) Performance measurement of a two-stage two-bladed Savonius rotor. Int J Renew Energy Res 4:115–121

    Google Scholar 

  11. Bhuyan S, Biswas A (2014) Investigations on self-starting and performance characteristics of simple H and hybrid H-Savonius vertical axis wind rotors. Energy Convers Manag 87:859–867. https://doi.org/10.1016/j.enconman.2014.07.056

    Article  Google Scholar 

  12. Ghosh A, Biswas A, Sharma KK, Gupta R (2015) Computational analysis of flow physics of a combined three bladed Darrieus Savonius wind rotor. J Energy Inst 88:425–437. https://doi.org/10.1016/j.joei.2014.11.001

    Article  Google Scholar 

  13. Ponta F, Shankar Dutt G (2000) An improved vertical-axis water-current turbine incorporating a channelling device. Renew Energy 20:223–241. https://doi.org/10.1016/S0960-1481(99)00065-8

    Article  Google Scholar 

  14. Thakur N, Biswas A, Kumar Y, Basumatary M (2019) CFD analysis of performance improvement of the Savonius water turbine by using an impinging jet duct design. Chinese J Chem Eng 27:794–801. https://doi.org/10.1016/j.cjche.2018.11.014

    Article  Google Scholar 

  15. Golecha K, Eldho TI, Prabhu SV (2011) Influence of the deflector plate on the performance of modified Savonius water turbine. Appl Energy 88:3207–3217. https://doi.org/10.1016/j.apenergy.2011.03.025

    Article  Google Scholar 

  16. Golecha K, Eldho TI, Prabhu SV (2012) Study on the interaction between two hydrokinetic Savonius turbines. Int J Rotating Mach. https://doi.org/10.1155/2012/581658

    Article  Google Scholar 

  17. Kailash G, Eldho TI, Prabhu SV (2012) Performance study of modified Savonius water turbine with two deflector plates. Int J Rotating Mach

  18. Baumatary M, Biswas A (2016) Numerical simulation of two-bladed Savonius water turbine with deflector. Int J Renew Energy Technol 7:383–402

    Article  Google Scholar 

  19. Kaprawi S, Santoso D, Sipahutar R (2015) Performance of combined water turbine darrieus-savonius with two stage Savonius buckets and single deflector. Int J Renew Energy Res 5:217–221

    Google Scholar 

  20. Sahim K, Ihtisan K, Santoso D, Sipahutar R (2014) Experimental study of darrieus-savonius water turbine with deflector: effect of deflector on the performance. Int J Rotating Mach. https://doi.org/10.1155/2014/203108

    Article  Google Scholar 

  21. Velasco D, López Mejia O, Laín S (2017) Numerical simulations of active flow control with synthetic jets in a Darrieus turbine. Renew Energy 113:129–140. https://doi.org/10.1016/j.renene.2017.05.075

    Article  Google Scholar 

  22. Rostami AB, Fernandes AC (2015) Simulation of fluttering and autorotation motion of vertically hinged flat plate. Proc Int Conf Offshore Mech Arct Eng OMAE 1:1–9. https://doi.org/10.1115/OMAE201541244

    Article  Google Scholar 

  23. Gerakopulos R, Boutilier MSH, Yarusevych S (2010) Aerodynamic Characterization of a NACA 0018 Airfoil at Low Reynolds Numbers. In: 40th Fluid Dynamics Conference and Exhibit 28 June - 1 July 2010, Chicago, Illinois. American Institute of Aeronautics and Astronautics, Waterloo, Ontario, N2L 3G1, Canada, p 13

  24. Ismail MF, Vijayaraghavan K (2015) The effects of aerofoil profile modification on a vertical axis wind turbine performance. Energy 80:20–31. https://doi.org/10.1016/j.energy.2014.11.034

    Article  Google Scholar 

  25. Tartuferi M, D’Alessandro V, Montelpare S, Ricci R (2015) Enhancement of savonius wind rotor aerodynamic performance: a computational study of new blade shapes and curtain systems. Energy 79:371–384. https://doi.org/10.1016/j.energy.2014.11.023

    Article  Google Scholar 

  26. Roy S, Saha UK (2014) An adapted blockage factor correlation approach in wind tunnel experiments of a Savonius-style wind turbine. Energy Convers Manag 86:418–427. https://doi.org/10.1016/j.enconman.2014.05.039

    Article  Google Scholar 

  27. Roy, Sukanta and Ujjwal K. (2014) Numerical Investigation to assess an optimal blade profile for the drag based vertical axis wind turbine. In: Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition IMECE2013 November 15–21, 2013, San Diego, California, USA. ASME, San Diego, California, USA, p 9

  28. Roy S, Ducoin A (2016) Unsteady analysis on the instantaneous forces and moment arms acting on a novel Savonius-style wind turbine. Energy Convers Manag 121:281–296. https://doi.org/10.1016/j.enconman.2016.05.044

    Article  Google Scholar 

  29. Hassan M, Iqbal T, Khan N, Hinchey M, Masek V (2010) CFD analysis of a twisted savonius turbine. Proc of NECEC

  30. Reza Hassanzadeh A, Yaakob O, Ahmed YM, Ismail MA (2013) Comparison of conventional and helical savonius marine current turbine using computational fluid dynamics. World Appl Sci J 28:1113–1119. https://doi.org/10.5829/idosi.wasj.2013.28.08.1385

    Article  Google Scholar 

  31. Baumatary M, Biswas A, Misra RD (2018) Performance investigations on modified vertical axis water turbine: combination of lift and drag. AIP Conf Proc. https://doi.org/10.1063/1.5032016

    Article  Google Scholar 

  32. Talukdar PK, Sardar A, Kulkarni V, Saha UK (2018) Parametric analysis of model Savonius hydrokinetic turbines through experimental and computational investigations. Energy Convers Manag 158:36–49. https://doi.org/10.1016/j.enconman.2017.12.011

    Article  Google Scholar 

  33. Roy S, Saha UK (2015) Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine. Appl Energy 137:117–125. https://doi.org/10.1016/j.apenergy.2014.10.022

    Article  Google Scholar 

  34. Banerjee A, Roy S, Prasenjit M, K SU (2014) Unsteady flow analysis around an elliptic-bladed Savonius-style wind turbine. In: GTINDIA2014–8141. ASME, New Delhi, India, p 7

  35. Sarma NK, Biswas A, Misra RD (2014) Experimental and computational evaluation of Savonius hydrokinetic turbine for low velocity condition with comparison to Savonius wind turbine at the same input power. Energy Convers Manag 83:88–98. https://doi.org/10.1016/j.enconman.2014.03.070

    Article  Google Scholar 

  36. Sarma NK, Biswas A, Misra RD (2014) Experimental and CFD Analyses of two bladed Savonius Water Turbine under low velocity conditions. In: POWER2014–32232. asmedigitalcollection.asme.org, p 10

  37. Hosseinibalam F, Hassanzadeh S, Mirmohammadi M (2019) Simulation of tidal energy extraction by using FLUENT model. Iran J Sci Technol Trans A Sci 43:2035–2042. https://doi.org/10.1007/s40995-019-00685-6

    Article  Google Scholar 

  38. Le Dang HN, Park HC, Ko JH (2022) Dynamic response estimation for a variable-camber NACA0012 hydrofoil of a flapping-type tidal stream turbine. J Mar Sci Technol 27:214–225. https://doi.org/10.1007/s00773-021-00827-9

    Article  Google Scholar 

  39. Wang S-Q, Sun K, Zhang J-H, Zhang L (2017) The effects of roll motion of the floating platform on hydrodynamics performance of horizontal-axis tidal current turbine. J Mar Sci Technol 22:259–269. https://doi.org/10.1007/s00773-016-0408-8

    Article  Google Scholar 

  40. Sitorus PE, Le TQ, Ko JH et al (2016) Design, implementation, and power estimation of a lab-scale flapping-type turbine. J Mar Sci Technol 21:115–128. https://doi.org/10.1007/s00773-015-0336-z

    Article  Google Scholar 

  41. Mabrouki I, Driss Z, Abid MS (2014) Experimental investigation of the height effect of water Savonius rotors. Int J Mech Appl 4:8–12. https://doi.org/10.5923/j.mechanics.20140401.02

    Article  Google Scholar 

  42. Mabrouki I, Driss Z, Abid MS (2014) Performance analysis of a water Savonius rotor: effect of the internal overlap. Sustain Energy 2:121–125. https://doi.org/10.1269/rse-2-4-1

    Article  Google Scholar 

  43. Al-Kayiem HH, Bhayo BA, Assadi M (2016) Comparative critique on the design parameters and their effect on the performance of S-rotors. Renew Energy 99:1306–1317. https://doi.org/10.1016/j.renene.2016.07.015

    Article  Google Scholar 

  44. Wang L, Yeung RW (2016) On the performance of a micro-scale Bach-type turbine as predicted by discrete-vortex simulations. Appl Energy 183:823–836. https://doi.org/10.1016/j.apenergy.2016.08.185

    Article  Google Scholar 

  45. Hassanzadeh R, Yaakob O, Gholami A et al (2018) Experimental investigation of an innovative configuration for new marine current turbine. Renew Energy 125:32–38. https://doi.org/10.1016/j.renene.2018.02.007

    Article  Google Scholar 

  46. Bakhshandeh Rostami A, Fernandes AC (2015) The effect of inertia and flap on autorotation applied for hydrokinetic energy harvesting. Appl Energy 143:312–323. https://doi.org/10.1016/j.apenergy.2015.01.051

    Article  Google Scholar 

  47. Basumatary M, Biswas A, Misra RD (2018) CFD analysis of an innovative combined lift and drag (CLD) based modified Savonius water turbine. Energy Convers Manag 174:72–87. https://doi.org/10.1016/j.enconman.2018.08.025

    Article  Google Scholar 

  48. Basumatary M, Biswas A, Misra RD (2020) Detailed hydrodynamic study for performance optimization of a combined lift and drag-based modified Savonius water turbine. J Energy Resour Technol 142:1–12. https://doi.org/10.1115/1.4045924

    Article  Google Scholar 

  49. Kalluvila JBS, Sreejith B (2018) Numerical and experimental study on a modified Savonius rotor with guide blades. Int J Green Energy 15:744–757. https://doi.org/10.1080/15435075.2018.1529574

    Article  Google Scholar 

  50. Hassan Saeed HA, Nagib Elmekawy AM, Kassab SZ (2019) Numerical study of improving Savonius turbine power coefficient by various blade shapes. Alexandria Eng J. https://doi.org/10.1016/j.aej.2019.03.005

    Article  Google Scholar 

  51. Lanzafame R, Mauro S, Messina M (2014) 2D CFD modeling of H-Darrieus Wind Turbines using a transition turbulence model. Energy Procedia 45:131–140. https://doi.org/10.1016/j.egypro.2014.01.015

    Article  Google Scholar 

  52. Kacprzak K, Liskiewicz G, Sobczak K (2013) Numerical investigation of conventional and modified Savonius wind turbines. Renew Energy 60:578–585. https://doi.org/10.1016/j.renene.2013.06.009

    Article  Google Scholar 

  53. McTavish S, Feszty D, Sankar T (2012) Steady and rotating computational fluid dynamics simulations of a novel vertical axis wind turbine for small-scale power generation. Renew Energy 41:171–179. https://doi.org/10.1016/j.renene.2011.10.018

    Article  Google Scholar 

  54. Yang B, Lawn C (2011) Fluid dynamic performance of a vertical axis turbine for tidal currents. Renew Energy 36:3355–3366. https://doi.org/10.1016/j.renene.2011.05.014

    Article  Google Scholar 

  55. Tian W, Song B, Van Zwieten JH, Pyakurel P (2015) Computational fluid dynamics prediction of a modified savonius wind turbine with novel blade shapes. Energies 8:7915–7929. https://doi.org/10.3390/en8087915

    Article  Google Scholar 

  56. Altan BD, Atilgan M (2008) An experimental and numerical study on the improvement of the performance of Savonius wind rotor. Energy Convers Manag 49:3425–3432. https://doi.org/10.1016/j.enconman.2008.08.021

    Article  Google Scholar 

  57. Altan BD, Atilgan M (2010) The use of a curtain design to increase the performance level of a Savonius wind rotors. Renew Energy 35:821–829. https://doi.org/10.1016/j.renene.2009.08.025

    Article  Google Scholar 

  58. Hosseini A, Goudarzi N (2019) Design and CFD study of a hybrid vertical-axis wind turbine by employing a combined Bach-type and H-Darrieus rotor systems. Energy Convers Manag 189:49–59. https://doi.org/10.1016/j.enconman.2019.03.068

    Article  Google Scholar 

  59. Antar E, Elkhoury M (2019) Parametric sizing optimization process of a casing for a Savonius vertical axis wind turbine. Renew Energy 136:127–138. https://doi.org/10.1016/j.renene.2018.12.092

    Article  Google Scholar 

  60. Ostos I, Ruiz I, Gajic M et al (2019) A modified novel blade configuration proposal for a more efficient VAWT using CFD tools. Energy Convers Manag 180:733–746. https://doi.org/10.1016/j.enconman.2018.11.025

    Article  Google Scholar 

  61. Kumar A, Saini RP (2017) Performance analysis of a Savonius hydrokinetic turbine having twisted blades. Renew Energy 108:502–522. https://doi.org/10.1016/j.renene.2017.03.006

    Article  Google Scholar 

  62. Daskiran C, Riglin J, Schleicher W, Oztekin A (2017) Transient analysis of micro-hydrokinetic turbines for river applications. Ocean Eng 129:291–300. https://doi.org/10.1016/j.oceaneng.2016.11.020

    Article  Google Scholar 

  63. Zhou D, Deng(Daniel) Z (2017) Ultra-low-head hydroelectric technology: a review. Renew Sustain Energy Rev 78:23–30. https://doi.org/10.1016/j.rser.2017.04.086

    Article  Google Scholar 

  64. Gupta R, Biswas A (2011) Comparative study of the performances of twisted two-bladed and three-bladed airfoil shaped H-Darrieus turbines by computational and experimental methods. Int J Renew Energy Technol 2:425. https://doi.org/10.1504/ijret.2011.042731

    Article  Google Scholar 

  65. El-Askary WA, Nasef MH, AbdEL-hamid AA, Gad HE (2015) Harvesting wind energy for improving performance of Savonius rotor. J Wind Eng Ind Aerodyn 139:8–15. https://doi.org/10.1016/j.jweia.2015.01.003

    Article  Google Scholar 

  66. Aslam Bhutta MM, Hayat N, Farooq AU et al (2012) Vertical axis wind turbine—a review of various configurations and design techniques. Renew Sustain Energy Rev 16:1926–1939. https://doi.org/10.1016/j.rser.2011.12.004

    Article  Google Scholar 

  67. Fujisawa N (1992) On the torque mechanism of Savonius rotors. J Wind Eng Ind Aerodyn 40:277–292. https://doi.org/10.1016/0167-6105(92)90380-S

    Article  Google Scholar 

  68. Mosbahi M, Ayadi A, Chouaibi Y et al (2019) Performance study of a Helical Savonius hydrokinetic turbine with a new deflector system design. Energy Convers Manag 194:55–74. https://doi.org/10.1016/j.enconman.2019.04.080

    Article  Google Scholar 

Download references

Acknowledgements

All the co-authors are thankful for immense support and suggestions throughout.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnimitra Biswas.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basumatary, M., Biswas, A. & Misra, R.D. CFD study of a combined lift and drag-based novel Savonius vertical axis water turbine. J Mar Sci Technol 28, 27–43 (2023). https://doi.org/10.1007/s00773-022-00907-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00773-022-00907-4

Keywords

Navigation