Skip to main content

Advertisement

Log in

Effects of nonlinear wave loads on large monopile offshore wind turbines with and without ice-breaking cone configuration

  • Original article
  • Published:
Journal of Marine Science and Technology Aims and scope Submit manuscript

Abstract

In the present paper, the computational fluid dynamics (CFD) method is used to investigate the variation of linear and nonlinear wave loads on a 10-MW large-scale monopile offshore wind turbine under typical sea conditions in the eastern seas of China. The effect of adding a structural ice-breaking cone configuration close to the mean water level on the monopile’s hydrodynamic response is studied further. Results are derived with the use of the CFD model and are compared with the relevant results that are calculated using the Morison equation and the potential flow theory based on the high-order boundary element method. The fifth-order Stokes’ theorem is used to model the incoming wave kinematics, and the volume of fluid (VOF) method is used to capture the free surface of waves and to accurately calculate the wave run-up on the monopile and cone configuration. The influence of different water depths and wave heights on the wave maximum vertical extent of wave uprush on the structure, pressure and horizontal wave forces on the monopile is investigated for both with and without the use of the cone configuration. Up–downward cone configuration results in better performance compared to the inverted cone configuration in terms of reduction of hydrodynamic nonlinear excitation loads and wave maximum vertical extent of wave uprush on the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Europe W (2020) Offshore wind in europe: key trends and statistics 2019. Wind Europe, Brussels, p 37

    Google Scholar 

  2. Shi W, Park HC, Chung CW, Kim YC (2011) Comparison of dynamic response of monopile, tripod and jacket foundation system for a 5-MW wind turbine. In: Proceedings of the 21st International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers, Hawaii, USA

  3. Esteban MD, López-Gutiérrez JS, Diez JJ (2011) Negro, V. Offshore wind farms: foundations and influence on the littoral processes. J Coast Res 64:656–660

    Google Scholar 

  4. Wind Power Offshore (2013) In depth: cost imperative drives monopiles to new depths. See http://www.windpoweroffshore.com/article/1210058/depth-cost-imperativedrives-monopiles-new-depths. Accessed 28 Mar 2020

  5. Bredmose H, Jacobsen NG (2010) Breaking wave impacts on offshore wind turbine foundations: Focused wave groups and CFD. In: Proceedings of the ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2010), Shanghai, China

  6. Vos LD, Frigaard P, Rouck JD (2007) Wave run-up on cylindrical and cone shaped foundations for offshore wind turbines. Coast Eng 54:17–29

    Article  Google Scholar 

  7. Myrhaug D, Holmedal LE (2010) Wave run-up on slender circular cylindrical foundations for offshore wind turbines in nonlinear random waves. Coast Eng 57:567–574

    Article  Google Scholar 

  8. Bachynski EE, Ormberg H (2015) Hydrodynamic modeling of large-diameter bottom-fixed offshore wind turbines. In: Proceedings of the ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2015), Newfoundland, Canada

  9. Aggarwal A, Chella MA, Bihs H, Arntsen ØA (2017) Numerical study of irregular breaking wave forces on a monopile for offshore wind turbines. Energy Procedia 137:246–254

    Article  Google Scholar 

  10. Jose J, Choi SJ, Giljarhus KET, Gudmestad OT (2017) A comparison of numerical simulations of breaking wave forces on a monopile structure using two different numerical models based on finite difference and finite volume methods. Ocean Eng 137:78–88

    Article  Google Scholar 

  11. Chella MA, Bihs H, Myrhaug D (2019) Wave impact pressure and kinematics due to breaking wave impingement on a monopile. J Fluids Struct 86:94–123

    Article  Google Scholar 

  12. Kamath A, Chella MA, Bihs H, Arntsen ØA (2016) Breaking wave interaction with a vertical cylinder and the effect of breaker location. Ocean Eng 128:105–115

    Article  Google Scholar 

  13. Liu S, Ong MC, Obhrai C (2019) Numerical simulations of breaking waves and steep waves past a vertical cylinder at different Keulegan-Carpenter numbers. J Offshore Mech Arct Eng 141(4):041806

    Article  Google Scholar 

  14. Robertson AN, Wendt F, Jonkman JM, Popko W, Borg M, Bredmose H, Schlutter F, Qvist J, Bergua R, Harries R, Yde A, Nygaard TA, Vaal JBD, Oggiano L, Bozonnet P, Bouy L, Sanchez CB, García RG, Bachynski EE, Tu Y, Bayati Il, Borisade F, Shin H, Zee TVD, Guerinel M (2016) OC5 Project Phase Ib: validation of hydrodynamic loading on a fixed, flexible cylinder for offshore wind applications. Energy Procedia 94:82–101

    Article  Google Scholar 

  15. Chen XB, Li J, Chen JY (2011) Calculation of the nonlinear wave force of offshore wind turbine based on the stream function wave theory. J Hunan Univ Nat Sci 38:22–28

    Google Scholar 

  16. Zhou H, Wan DC (2014) Numerical simulation of the unsteady flow around wind turbines with different blades numbers. Chin J Hydrodyn 29:444–453

    Google Scholar 

  17. Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225

    Article  Google Scholar 

  18. Zhu YR (1983) Analyses of the ranges of validity for several wave theories. Coast Eng 2:13–29

    Google Scholar 

  19. Skjelbreia L, Hendrickson J (1960) Fifth order gravity wave theory. In: Proceedings of the 7th Coastal Engineering Conference, Hague, Netherlands

  20. Nishimura H, Isobe M, Horikawa K (1977) Higher order solutions of the stokes and the cnoidal waves. J Fac Eng Univ Tokyo Ser B 2:267–293

    MathSciNet  Google Scholar 

  21. Fluent A (2011) Fluent 14.0 user's guide. ANSYS FLUENT Inc.

  22. Bak C, Zahle F, Bitsche R, Kim T, Yde A, Henriksen LC, Andersen A, Natarajan A, Hansen MH (2013) The DTU 10-MW reference wind turbine. In: Danish wind power research 2013

  23. Teng B, Taylor RE (1995) New higher-order boundary element methods for wave diffraction/radiation. Appl Ocean Res 17(2):71–77

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (Grant Nos. 51709039, 51709040). This work is also partially supported by the international collaboration and exchange program from the NSFC-RCUK/EPSRC with grant No. 51761135011. This work is also partially supported by LiaoNing Revitalization Talents Program (XLYC1807208), State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University and the Fundamental Research Funds for the Central University (DUT19GJ209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Equations related to fifth-order stokes waves

$$s = \sinh \left( {kd} \right),$$
$$c = \cosh \left( {kd} \right),$$
$$A_{11} = {\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 s}}\right.\kern-0pt} \!\lower0.7ex\hbox{$s$}},$$
$$A_{13} = \frac{{ - c^{2} \left( {5c^{2} + 1} \right)}}{{8s^{5} }},$$
$$A_{15} = \frac{{ - \left( {1184c^{10} - 1440c^{8} - 1992c^{6} + 2641c^{4} - 249c^{2} + 18} \right)}}{{1536s^{11} }},$$
$$A_{22} = \frac{3}{{8s^{4} }},$$
$$A_{24} = \frac{{\left( {192c^{8} - 424c^{6} - 312c^{4} + 480c^{2} - 17} \right)}}{{768s^{10} }},$$
$$A_{33} = \frac{{\left( {13 - 4c^{2} } \right)}}{{64s^{7} }},$$
$$A_{35} = \frac{{\left( {512c^{12} + 4224c^{10} - 6800c^{8} - 12808c^{6} + 16704c^{4} - 3154c^{2} + 107} \right)}}{{4096s^{13} \left( {6c^{2} - 1} \right)}},$$
$$A_{44} = \frac{{\left( {80c^{6} - 816c^{4} + 1338c^{2} - 197} \right)}}{{1536s^{10} \left( {6c^{2} - 1} \right)}},$$
$$A_{55} = \frac{{ - \left( {2880c^{10} - 72480c^{8} + 324000c^{6} - 432000c^{4} + 163470c^{2} - 16245} \right)}}{{61440s^{11} \left( {6c^{2} - 1} \right)\left( {8c^{4} - 11c^{2} + 3} \right)}},$$
$$B_{22} = \frac{{\left( {2c^{2} + 1} \right)}}{{4s^{3} }}c,$$
$$B_{24} = \frac{{c\left( {272c^{8} - 504c^{6} - 192c^{4} + 322c^{2} + 21} \right)}}{{384s^{9} }},$$
$$B_{33} = \frac{{3\left( {8c^{6} + 1} \right)}}{{64s^{6} }},$$
$$B_{35} = \frac{{\left( {88128c^{14} - 208224c^{12} + 70848c^{10} + 54000c^{8} - 21816c^{6} + 6264c^{4} - 54c^{2} - 81} \right)}}{{12288s^{12} \left( {6c^{2} - 1} \right)}},$$
$$B_{44} = \frac{{c\left( {768c^{10} - 448c^{8} - 48c^{6} + 48c^{4} + 106c^{2} - 21} \right)}}{{384s^{9} \left( {6c^{2} - 1} \right)}},$$
$$B_{55} = \frac{{\left( {192000c^{16} - 262720c^{14} + 83680c^{12} + 20160c^{10} - 7280c^{8} + 7160c^{6} - 1800c^{4} - 1050c^{2} + 225} \right)}}{{12288s^{10} \left( {6c^{2} - 1} \right)\left( {8c^{4} - 11c^{2} + 3} \right)}},$$
$$C_{1} = \frac{{8c^{4} - 8c^{2} + 9}}{{8s^{4} }},$$
$$C_{2} = \frac{{3840c^{12} - 4096c^{10} - 2592c^{8} - 1008c^{6} + 5944c^{4} - 1830c^{2} + 147}}{{512s^{10} \left( {6c^{2} - 1} \right)}}.$$

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Shi, W., You, J. et al. Effects of nonlinear wave loads on large monopile offshore wind turbines with and without ice-breaking cone configuration. J Mar Sci Technol 26, 37–53 (2021). https://doi.org/10.1007/s00773-020-00719-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00773-020-00719-4

Keywords

Navigation