Challenges in calculation of critical buckling load of tubular members of jacket platforms in finite element modeling


Accurate estimation of the capacity curve of offshore jacket structures to achieve performance levels and ductility is of great importance. Proper modeling of compressive members to correctly investigate global and local buckling is crucial in estimation of the capacity curve. Buckling modes and deformations due to local buckling can be considered, if the compressive braces are modeled by shell or solid elements. The purpose of this paper is to achieve the correct compressive behavior of braces with solid type elements and investigate the effects of five different parameters such as D/t, L/D, mesh size, mesh size ratio, and imperfections. ABAQUS FE software is used for this purpose. The percentage of difference between model results and ISO equation for critical buckling load and the best choice of the above variables has been presented to achieve the maximum precision. Also the effect of these parameters on buckling capacity curve of tubular members has been estimated. The percentage of the effect of mentioned parameters is shown as separate pie charts. Consequently, mesh size ratio has the greatest effect on elastic stiffness and post-buckling strength. On the other side, the imperfection value is the most effective parameter on critical buckling load.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16


  1. 1.

    Tabeshpour MR, Komachi Y (2019) Rehabilitation of jacket offshore platforms using friction damper device and buckling restrained braces under extreme loads. Proc Inst Mech Engineers Part M J Eng Marit Env 233(1):209–217

    Google Scholar 

  2. 2.

    El-Din M, Kim J (2011) Seismic performance evaluation of fixed steel jacket platforms retrofitted with buckling restrained braces. In: ASME 2011 30th international conference on ocean, offshore and arctic engineering, pp 135–142, Rotterdam, The Netherlands

  3. 3.

    Marshall PW (1992) Design of welded tubular connections, basis and use of AWS code provisions. Elsevier, Amsterdam

    Google Scholar 

  4. 4.

    Yasseri S, Skinner K, Styles D (2006) Post buckling response study for high D/t tubular members, technical report

  5. 5.

    Tabeshpour MR, Erfani MH, Sayyadi H (2016) Study on ultimate capacity of offshore jacket platforms by using beam elements, considering the effects of global and local buckling of the elements. In: 18th international conference of marine industries (MIC2016), Kish island

  6. 6.

    Tabeshpour MR, Erfani MH, Sayyadi H (2018) Investigation of uncertainties in buckling and post-buckling behavior of typical braces of offshore jacket platforms by using Solid elements in ABAQUS. In: 20th international conference of marine industries (MIC2018), Tehran

  7. 7.

    Karamanos SA, Tassoulas JL (1996) Tubular members. II: local buckling and experimental verification. J Eng Mech 122(1):72–78

    Article  Google Scholar 

  8. 8.

    Talaeitaba SB, Halabian M, Torki ME (2015) ‘Nonlinear behavior of FRP-reinforced concrete-filled double-skin tubular columns using finite element analysis’. Thin-walled Struct 95:389–407

    Article  Google Scholar 

  9. 9.

    Sadowski AJ, Rotter JM (2013) ‘Solid or shell finite elements to model thick cylindrical tubes and Shells under global bending. Int J Mech Sci 74:143–153

    Article  Google Scholar 

  10. 10.

    Bardi FC, Kyriakides S (2006) Plastic buckling of circular tubes under axial compression—part I: experiments. Int J Mech Sci 48(8):830–841

    Article  Google Scholar 

  11. 11.

    Bardi FC, Kyriakides S, Yun HD (2006) Plastic buckling of circular tubes under axial compression—part II: analysis. Int J Mech Sci 48(8):842–854

    Article  Google Scholar 

  12. 12.

    Karampour H (2018) ‘Effect of proximity of imperfections on buckle interaction in deep subsea pipelines’. Mar Struct 59:444–457

    Article  Google Scholar 

  13. 13.

    Zhang S, Khan I (2009) Buckling and ultimate capability of plates and stiffened panels in axial compression. Mar Struct 22(4):791–808

    Article  Google Scholar 

  14. 14.

    Dhanens F, Lagae G, Rathé J, Van Impe R (1993) Stresses in and buckling of unstiffened cylinders subjected to local axial loads. J Constr Steel Res 27(1–3):89–106

    Article  Google Scholar 

  15. 15.

    Ma H, Sause R, Mahvashmohammadi K (2018) Experimental and analytical investigation of system of horizontally curved bridge girders with tubular top flanges. Struct Infrastruct Eng 14(12):1664–1677

    Article  Google Scholar 

  16. 16.

    Thai HT, Uy B, Khan M (2015) A modified stress-strain model accounting for the local buckling of thin-walled stub columns under axial compression. J Constr Steel Res 111:57–69

    Article  Google Scholar 

  17. 17.

    Simulia DS (2012) (Dassault Systèmes). Abaqus 6.12 documentation. Providence, Rhode Island, US, 261

  18. 18.

    Fernando P, Rodrigues N, Jacob BP (2005) Collapse analysis of steel jacket structures for offshore oil exploitation. J Constr Steel Res 2005:61

    Google Scholar 

  19. 19.

    Priyadarsini RS, Kalyanaraman V, Srinivasan SM (2012) Numerical and experimental study of buckling of advanced fiber composite cylinders under axial compression. Int J Struct Stab Dyn 12(04):1250028

    Article  Google Scholar 

  20. 20.

    Grzeszykowski B, Szmigiera E (2017) Ductility assessment of two-chord composite steel-concrete battened columns. Struct Infrastruct Eng 13(11):1414–1424

    Article  Google Scholar 

  21. 21.

    Saad-Eldeen S, Garbatov Y, Guedes Soares C (2016) Strength assessment of steel plates subjected to compressive load and dent deformation. Struct Infrastruct Eng 12(8):995–1011

    Article  Google Scholar 

  22. 22.

    Hu SZ, Prion HGL, Birkemoe PC (1993) Influence of imperfections on the strength of unstiffened, fabricated, tubular beam-columns. J Constr Steel Res 25(1–2):43–61

    Article  Google Scholar 

  23. 23.

    Harding JE, Dowling PJ, Agelidis N (1982) Buckling of Shells in offshore structures, Granada

  24. 24.

    Weaver PM, Dickenson R (2003) Interactive local/Euler buckling of composite cylindrical Shell. Comput Struct 81(30–31):2767–2773

    Article  Google Scholar 

  25. 25.

    Fajuyitan OK, Sadowski AJ, Wadee MA, Rotter JM (2018) Nonlinear behaviour of short elastic cylindrical shells under global bending. Thin-walled Struct 124:574–587

    Article  Google Scholar 

  26. 26.

    Silvestre N (2008) ‘Buckling behaviour of elliptical cylindrical Shells and tubes under compression’. Int J Solids Struct 45(16):4427–4447

    Article  Google Scholar 

  27. 27.

    ISO 19902 (2007) International Standard: petroleum and natural gas industries-fixed steel offshore structures, first edition

  28. 28.

    Sun HH, Spencer J (2005) Buckling strength assessment of corrugated panels in offshore structures. Mar Struct 18(7–8):548–565

    Article  Google Scholar 

  29. 29.

    Su RK, Wang L (2015) Flexural and axial strengthening of preloaded concrete columns under large eccentric loads by flat and precambered steel plates. Struct Infrastruct Eng 11(8):1083–1101

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to M. R. Tabeshpour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tabeshpour, M.R., Erfani, M.H. & Sayyaadi, H. Challenges in calculation of critical buckling load of tubular members of jacket platforms in finite element modeling. J Mar Sci Technol 25, 866–886 (2020).

Download citation


  • Jacket type offshore platforms
  • Local buckling
  • ISO equation
  • Compressive behavior
  • Tubular members
  • Ultimate capacity