Adaptive fault-tolerant attitude control for a CMG-based underwater vehicle

Abstract

This paper proposes a fault-tolerant control strategy for the attitude control problem of a CMG-based underwater vehicle based on the adaptive sliding mode control method and Lyapunov stability theory. First, a fault-tolerant control model is presented for the quaternion-based attitude kinematic equations combined with a pyramid control moment gyroscope (CMG) system. Second, considering the momentum singularity and input saturation constraint problem, adaptive control method is inspired to estimate the model uncertainties and actuator failures under some basic assumptions. Subsequently, the proposed controller is derived from backstepping-based design techniques and its feasibility is complemented by the remarks. Finally, its efficiency and robustness are illustrated in simulation results to against the uncertainties and disturbances.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Mony A, Hablani HB, Sukumar S (2016) Steering laws of single gimbal control moment gyros applied to spacecraft manoeuvres and tracking—a comparison. In: 2016 Indian control conference (ICC), IEEE, pp 304–311

  2. 2.

    Thornton B, Ura T, Nose Y, Turnock S (2007) Zero-G class underwater robots: unrestricted attitude control using control moment gyros. IEEE J Ocean Eng 32(3):565–583

    Article  Google Scholar 

  3. 3.

    Yin S, Luo H, Ding SX (2014) Real-time implementation of faulttolerant control systems with performance optimization. IEEE Trans Ind Electron 61(5):2402–2411

    Article  Google Scholar 

  4. 4.

    Akrad A, Hilairet M, Diallo D (2011) Design of a fault-tolerant controller based on observers for a PMSM drive. IEEE Trans Ind Electron 58(4):1416–1427

    Article  Google Scholar 

  5. 5.

    Zhang Y, Jiang J (2008) Bibliographical review on reconfigurable fault-tolerant control systems. Annu Rev Control 32(2):229–252

    Article  Google Scholar 

  6. 6.

    Zhang Y, Jiang J (2002) Active fault-tolerant control system against partial actuator failures. IEE Proc Control Theory Appl 149(1):95–104

    Article  Google Scholar 

  7. 7.

    Lu P, Van Eykeren L, van Kampen EJ, de Visser C, Chu Q (2015) Double-model adaptive fault detection and diagnosis applied to real flight data. Control Eng Pract 36:39–57

    Article  Google Scholar 

  8. 8.

    Gao Z, Ding SX (2007) Actuator fault robust estimation and fault-tolerant control for a class of nonlinear descriptor systems. Automatica 43(5):912–920

    MathSciNet  Article  Google Scholar 

  9. 9.

    Yang W, Tong S (2016) Adaptive output feedback fault-tolerant control of switched fuzzy systems. Inf Sci 329:478–490

    Article  Google Scholar 

  10. 10.

    He Z, Wang J, Liu Z, Zhao J (2016) Sliding mode fault-tolerant control for uncertain time-delay switched systems. Int J Control Autom 9(10):293–302

    Article  Google Scholar 

  11. 11.

    Chen M, Jiang B, Cui R (2016) Actuator fault-tolerant control of ocean surface vessels with input saturation. Int J Robust Nonlinear Control 26(3):542–564

    MathSciNet  Article  Google Scholar 

  12. 12.

    Lunze J, Steffen T (2006) Control reconfiguration after actuator failures using disturbance decoupling methods. IEEE Trans Autom Control 51(10):1590–1601

    MathSciNet  Article  Google Scholar 

  13. 13.

    Benosman M (2010) A survey of some recent results on nonlinear fault tolerant control. Math Probl Eng 2010(4):242–256

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Sharifi F, Mirzaei M, Gordon BW, Zhang Y (2010). Fault tolerant control of a quadrotor UAV using sliding mode control. In: 2010 conference on control and fault-tolerant systems (SysTol), IEEE, pp 239–244

  15. 15.

    Liu L, Wang Z, Zhang H (2016) Adaptive fault-tolerant tracking control for MIMO discrete-time systems via reinforcement learning algorithm with less learning parameters. IEEE Trans Autom Sci Eng 14(1):299–313

    Article  Google Scholar 

  16. 16.

    Li Y, Sun K, Tong S (2018) Observer-based adaptive fuzzy fault-tolerant optimal control for SISO nonlinear systems. IEEE T Cybern 49(2):649–661

    Article  Google Scholar 

  17. 17.

    Ye D, Yang X, Su L (2017) Fault-tolerant synchronization control for complex dynamical networks with semi-Markov jump topology. Appl Math Comput 312:36–48

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Li T, Zhang Y, Gordon BW (2013) Passive and active nonlinear fault-tolerant control of a quadrotor unmanned aerial vehicle based on the sliding mode control technique. Proc Inst Mech Eng Part I J Syst Control Eng 227(1):12–23

    Google Scholar 

  19. 19.

    Zhang F, Jin L, Xu S (2017) Fault tolerant attitude control for spacecraft with SGCMGs under actuator partial failure and actuator saturation. Acta Astronaut 132:303–311

    Article  Google Scholar 

  20. 20.

    Noumi A, Takahashi M (2013) Fault-tolerant attitude control systems for satellite equipped with control moment gyros. In: AIAA guidance, navigation, and control (GNC) conference, MA, USA, pp 2013–5119

  21. 21.

    Hu Q, Xiao B, Friswell MI (2011) Robust fault-tolerant control for spacecraft attitude stabilisation subject to input saturation. IET Contr Theory Appl 5(2):271–282

    MathSciNet  Article  Google Scholar 

  22. 22.

    Xu Z (2014) Research on modeling and motion control method of the underwater vehicle considering the gyroscopic effect. Master’s thesis, Huazhong Univesity of Science and Technology

  23. 23.

    Prestero TJ (2001) Verifcation of a six-degree of freedom simulation model for the remus autonomous underwater vehicle. Master’s thesis, Massachusetts Institute of Technology

  24. 24.

    Wie B (2004) Singularity analysis and visualization for single-gimbal control moment gyro systems. J Guid Control Dyn 27(2):271–282

    MathSciNet  Article  Google Scholar 

  25. 25.

    Xu R, Tang G, Xie D, Huang D, Han L (2018) Underactuated tracking control of underwater vehicles using control moment gyros. Int J Adv Robot Syst 15(1):1–8

    Google Scholar 

  26. 26.

    Fossen TI (1994) Guidance and control of ocean vehicles. Wiley, Chichester

    Google Scholar 

Download references

Acknowledgements

This work is supported by the HUST Interdisciplinary Innovation Team Project, the Fundamental Research Funds for the Central Universities (nos. 2018KFYYXJJ012, 2018JYCXJJ045), the National Natural Science Foundation of China (no. 51979116) and the Innovation Foundation of Maritime Defense Technologies Innovation Center.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guoyuan Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, R., Tang, G., Huang, D. et al. Adaptive fault-tolerant attitude control for a CMG-based underwater vehicle. J Mar Sci Technol 25, 800–807 (2020). https://doi.org/10.1007/s00773-019-00681-w

Download citation

Keywords

  • Underwater vehicle control
  • Control moment gyros
  • Attitude control
  • Fault-tolerant control
  • Adaptive control