Skip to main content

Numerical analysis of supercavitating flow around axisymmetric underwater objects using a viscous-potential method

Abstract

A numerical method is developed to predict the supercavity around two-dimensional and axisymmetric cavitators. The proposed method uses potential flow to compute cavity shapes and drag forces acting on underwater bodies, which are parameters of practical importance for supercavitating objects. The numerical results are validated via comparison with existing analytical and empirical solutions for symmetric cavity flows, as well as with experimental results for axisymmetric cavity flows. In addition, a viscous-potential method is developed for calculating the frictional drag acting on the wetted body surface behind the cavitator. The obtained results provide details of the drag curve that appear with an increase in speed during cavity growth. Furthermore, the geometry and drag features of supercavitating underwater vehicles under practical submerged depth conditions are investigated.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. 1.

    Tulin M (1953) Steady two-dimensional cavity flows about slender bodies. Navy Dept., Washington

    Google Scholar 

  2. 2.

    Wu TY (1955) A free streamline theory for two-dimensional fully cavitated hydrofoils. Calif. Inst. Tech. Hydrodyn. Lab. Rep. No. 21–17

  3. 3.

    Garabedian PR (1956) Calculation of axially symmetric cavities and jets. Pac J Math 6:611–684

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Waid RL (1957) Water tunnel investigation of two-dimensional cavities. Calif. Inst. Tech Hydrodyn. Lab. Rep. No. E-73.6

  5. 5.

    Silberman E (1959) Experimental studies of supercavitating flow about simple two-dimensional bodies in a jet. J Fluid Mech 5(3):337–354

    Article  MATH  Google Scholar 

  6. 6.

    Self M, Ripken JF (1955) Steady-state cavity studies in a free-jet water tunnel. St. Anthony Falls Hydr. Lab. Report 47:1–46

    Google Scholar 

  7. 7.

    Serebryakov VV (1972) The annular model for calculation of axisymmetric cavity flows. Hydromech Nauvoka Dunka Ed. Kiev 27:25–29 (in Russian)

    Google Scholar 

  8. 8.

    Logvinovich GV, Serebryakov VV (1975) On methods of calculating a shape of slender axisymmetric cavities. Gidromehanika 32:47–54

    Google Scholar 

  9. 9.

    Vasin AD (2001) The principle of independence of the cavity sections expansion as the basis for investigation on cavitation flows. RTO Lecture Series on Supercavitating Flows. In: The von Karman Institute (VKI), Brussels, Belgium, 12–16 February, 8, 1–27

  10. 10.

    Semenenko VN (2001) Artificial supercavitation. Physics and calculation. RTO lecture series on supercavitating flows. In: the von Karman Institute (VKI), Brussels, Belgium, 12–16 February, 11, 1–33

  11. 11.

    Kirshner IN, Chamberlin RE, Arzoumanian SH (2009) A simple approach to estimating three-dimensional supercavitating flow fields. In: CAV2009. Ann Arbor, USA, 17–22 August

  12. 12.

    Lee CS (1979) Prediction of steady and unsteady performance of marine propellers with or without cavitation by numerical lifting surface theory. Ph.D. Thesis, Department of Ocean Engineering, M.I.T., Cambridge, Massachusetts

  13. 13.

    Kim YG, Lee CS (1990) Super-cavitating flow problems about two-dimensional symmetric strut. J Soc Naval Archit Korea 27(4):15–26

    Google Scholar 

  14. 14.

    Lee CS, Kim YG, Lee JT (1992) A potential-based panel method for the analysis of a two-dimensional super- or partially-cavitating hydrofoil. J Ship Res 36(2):168–181

    Google Scholar 

  15. 15.

    Ahn BK, Jang HG, Kim HT Lee CS (2012) Numerical analysis of axisymmetric supercavitating flows. In: CAV2012. Singapore, 14–16 August

  16. 16.

    Kim JH, Ahn BK (2015) Numerical simulation of supercavitating flows using a viscous-potential method. In: CAV2015. Lausanne, Switzerland, 6–10 December

  17. 17.

    Paryshev EV (2006) Approximate mathematical models in high-speed hydrodynamics. J Eng Math 55:41–64

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Breslin JP, Van Houten RJ, Kerwin JE, Johnsson CA (1982) Theoretical and experimental propeller-induced hull pressures arising from intermittent blade cavitation, loading, and thickness. SNAME Trans 90:111–151

    Google Scholar 

  19. 19.

    Villat H (1911) Sur la resistance des fluids. Annuales de l’Ecole Normale Superieure 203

  20. 20.

    Armstrong AH (1953) Abrupt and smooth separation in plane and axisymmetric flow. Memo Arm Res Est G.B. n° 22–63

  21. 21.

    Franc JP, Michel JM (2004) Fundamentals of cavitation. Kluwer Academic Publishers, Dordrecht, The Netherlands

    MATH  Google Scholar 

  22. 22.

    Riabouchinsky D (1921) On steady fluid motion with free surface. Proc Math Soc Lond 19(1):206–215

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Gilbarg D, Serrin J (1950) Free boundaries and jets in the theory of cavitation. J Math Phys 29(1):1–12

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Tulin M (1964) Supercavitating flows-small perturbation theory. J Ship Res 8:16–37

    MathSciNet  Google Scholar 

  25. 25.

    Lee CS (1989) A potential-based panel method for the analysis of a 2-dimensional partially cavitating hydrofoil. J Soc Naval Archit Korea 26(4):27–34 (in Korean)

    MathSciNet  Google Scholar 

  26. 26.

    Newman JN (1992) Panel methods in marine hydrodynamics. MIT Press, Cambridge

    Google Scholar 

  27. 27.

    Granville PS (1977) Drag and turbulent boundary layer of flat plates at low Reynolds numbers. J Ship Res 21(1):30–39

    Google Scholar 

  28. 28.

    ITTC (1957) In: Proc. 8th ITTC. Canal de Experienceias Hidrodinamicas

  29. 29.

    Schoenherr KE (1932) Resistance of flat surfaces moving through a fluid. SNAME Trans 40:279–313

    Google Scholar 

  30. 30.

    Schlichting H (1979) Boundary layer theory. McGraw-Hill, New York

    MATH  Google Scholar 

  31. 31.

    Newman JN (1977) Marine hydrodynamics. MIT Press, Cambridge

    Google Scholar 

  32. 32.

    Wu TYT, Whitney AK, Brennen C (1971) Cavity-flow wall effects and correction rules. J Fluid Mech 49(2):223–256

    Article  MATH  Google Scholar 

  33. 33.

    Brennen C (1969) A numerical solution of axisymmetric cavity flows. J Fluid Mech 37(4):671–688

    Article  MATH  Google Scholar 

  34. 34.

    Kalikov VP, Sholomovich GI (1966) Method of approximate account for the wall effect in cavitation flow around bodies in water tunnels. Fluid Dyn 1(4):61–64

    Article  Google Scholar 

  35. 35.

    Plesset MS, Shaffer PA (1948) Cavity drag in two and three dimensions. J Appl Phys 19:934–939

    Article  Google Scholar 

  36. 36.

    Perry B (1952) Evaluation of integrals occurring in the cavity theory of Plesset and Shaffer. Calif Inst Tech Hydrodyn Lab 21(11):1–24

    Google Scholar 

Download references

Acknowledgements

This research was conducted with the support of the National Research Foundation of Korea (NRF-2014M3C1A9060786).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Byoung-Kwon Ahn.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, JH., Ahn, BK. Numerical analysis of supercavitating flow around axisymmetric underwater objects using a viscous-potential method. J Mar Sci Technol 23, 364–377 (2018). https://doi.org/10.1007/s00773-017-0479-1

Download citation

Keywords

  • Supercavitation
  • Cavitator
  • Axisymmetric bodies
  • Potential flow
  • Viscous-potential method