Skip to main content
Log in

A finite pointset method for the numerical simulation of free surface flow around a ship

  • Original article
  • Published:
Journal of Marine Science and Technology Aims and scope Submit manuscript

Abstract

In this paper, we present a Finite pointset method (FPM) for the numerical simulation of free surface flow around a ship in calm water. It is a Lagrangian and meshless particle scheme which is applied to the projection method for the incompressible governing equations. This requires the solution of Poisson problems in each time step, so a moving least squares (MLS) interpolants is used for the spatial derivatives in order to discretize the Poisson equation with pressure-Dirichlet condition of free surface flow in meshless structure. Meanwhile, an additional problem of the periodic particle locations redistribution in the present approach is still handled by MLS interpolants. With the proposed FPM technique, problems associated with the free surface flow around a ship are circumvented. A verification of numerical modeling is made using the Wigley hull and the validity of the proposed methodology is examined by comparing the detail of wave profile and wave-making resistance with Series 60 model. The results demonstrate that FPM is able to perform efficient and stable simulations of free surface flow around a ship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024

    Article  Google Scholar 

  2. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181(3):375–389

    Article  MATH  Google Scholar 

  3. Pearce M, Takeda T, Hudson D (2011) Prediction of ship motions for a Wigley Hull. In: Proceedings of 6th international SPHERIC workshop, Germany, Hamburg, June, pp 226–232

  4. Veen D, Gourlay T (2012) A combined strip theory and smoothed particle hydrodynamics approach for estimating slamming loads on a ship in head seas. Ocean Eng 43:64–71

    Article  Google Scholar 

  5. Marrone S, Colagrossi A, Antuono M, Lugni C, Tulin MP (2011) A 2D+t SPH model to study the breaking wave pattern generated by fast ships. J Fluids Struct 27(8):1199–1215

    Article  Google Scholar 

  6. Landrini M, Colagrossi A, Tulin MP (2001) Breaking bow and stern waves: numerical simulations. In: Proceedings of 16th international Workshop on water waves and floating bodies, Japan, Hiroshima

  7. Landrini M, Colagrossi A, Greco M, Tulin MP (2012) The fluid mechanics of splashing bow waves on ships: a hybrid BEM–SPH analysis. Ocean Eng 53:111–127

    Article  Google Scholar 

  8. Wan DC, Shen ZR, Ma J (2010) Numerical simulations of viscous flows around surface ship by level set method. J Hydrodyn Ser B 22(5):271–277

    Article  Google Scholar 

  9. Chen JK, Beraun JE (2000) A generalized smoothed particle hydrodynamics method for nonlinear dynamic problems. Comput Methods Appl Mech Eng 190(1):225–239

    Article  MATH  Google Scholar 

  10. Johnson GR, Beissel SR (1996) Normalized smoothing functions for SPH impact computations. Int J Numer Meth Eng 39(16):2725–2741

    Article  MATH  Google Scholar 

  11. Bonet J, Lok TS (1999) Variational and momentum preservation aspects of smooth particle hydrodynamic formulations. Comput Methods Appl Mech Eng 180(1):97–115

    Article  MathSciNet  MATH  Google Scholar 

  12. Fang J, Parriaux A, Rentschler M, Ancey C (2009) Improved SPH methods for simulating free surface flows of viscous fluids. Appl Numer Math 59(2):251–271

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhang GM, Batra RC (2004) Modified smoothed particle hydrodynamics method and its application to transient problems. Comput Mech 34(2):137–146

    Article  MATH  Google Scholar 

  14. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Meth Fluids 20(8–9):1081–1106

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu MB, Xie WP, Liu GR (2005) Modeling incompressible flows using a finite particle method. Appl Math Model 29(12):1252–1270

    Article  MATH  Google Scholar 

  16. Oger G, Doring M, Alessandrini B, Ferrant P (2007) An improved SPH method: towards higher order convergence. J Comput Phys 225(2):1472–1492

    Article  MathSciNet  MATH  Google Scholar 

  17. Oñate E, Idelsohn S, Zienkiewicz OC, Taylor RL (1996) A finite point method in computational mechanics. Applications to convective transport and fluid flow. Int J Numer Methods Eng 39(22):3839–3866

    Article  MathSciNet  MATH  Google Scholar 

  18. Oñate E, Idelsohn S, Zienkiewicz OC, Taylor RL, Sacco C (1996) A stabilized finite point method for analysis of fluid mechanics problems. Comput Methods Appl Mech Eng 139(1):315–346

    Article  MathSciNet  MATH  Google Scholar 

  19. Zienkiewicz OC, Oñate E, Idelsohn S (1995) Moving least square approximations for solution of differential equations. Centro Internacional de Métodos Numéricos en Ingeniería, Spain

    Google Scholar 

  20. Kuhnert J, Tramecon A, Ullrich P (2000) Advanced air bag fluid structure coupled simulations applied to out-of position cases. In: EUROPAM conference proceedings, Paris

  21. Tiwari S, Kuhnert J (2002) A meshfree method for incompressible fluid flows with incorporated surface tension. Revue Européenne des Éléments 11(7–8):965–987

    Article  MATH  Google Scholar 

  22. Tiwari S, Kuhnert J (2003) Particle method for simulation of free surface flows. Hyperbolic problems: theory, numerics applications. Springer, Berlin, Heidelberg, pp 889–898

    Chapter  Google Scholar 

  23. Hietel D, Junk M, Kuhnert J, Tiwari S (2005) Meshless methods for conservation laws. Analysis and numerics for conservation laws. Springer, Berlin, Heidelberg, pp 339–362

    Chapter  Google Scholar 

  24. Tiwari S, Kuhnert J (2005) A numerical scheme for solving incompressible and low mach number flows by the finite pointset method. Meshfree methods for partial differential equations II. Springer, Berlin, Heidelberg, pp 191–206

    Chapter  Google Scholar 

  25. Dilts GA (1999) Moving-least-squares-particle hydrodynamics—I. Consistency and stability. Int J Numer Meth Eng 44(8):1115–1155

    Article  MathSciNet  MATH  Google Scholar 

  26. Le Touzé D, Colagrossi A, Colicchio G, Greco M (2013) A critical investigation of smoothed particle hydrodynamics applied to problems with free-surfaces. Int J Numer Meth Fluids 73(7):660–691

    MathSciNet  Google Scholar 

  27. Dawson CW (1977) A practical computer method for solving ship-wave problems. In: Proceedings of the 2nd international conference on numerical ship hydrodynamics, Berkeley, CA, pp 30–38

  28. Musker AJ (1989) A panel method for predicting ship wave resistance. In: 17th symposium on naval hydrodynamics, pp 143–150

  29. Nakos DE, Sclavounos PD (1994) Kelvin Wakes and wave resistance of cruiser and transom-stern ships. J Ship Res 38(1):9–29

    Google Scholar 

  30. Millward A, Nicolaou D, Rigby SG (2003) Numerical modelling of the water flow around a fast ship with a transom stern. Int J Marit Eng 145(A3):21–34

    Google Scholar 

  31. Chorin A (1968) Numerical solution of the Navier–Stokes equations. J Math Comput 22:745–762

    Article  MathSciNet  MATH  Google Scholar 

  32. Colagrossi A, Antuono M, LeTouze D (2009) Theoretical considerations on the free surface role in the SPH model. Phys Rev E Stat Nonlinear Soft Mater Phys 79(5):056701 (:1-13)

    Article  Google Scholar 

  33. Koshizuka S, Oka Y (1996) Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl Sci Eng 123(3):421–434

    Google Scholar 

  34. Beasley JE, Cao B (1996) A tree search algorithm for the crew scheduling problem. Eur J Oper Res 94(3):517–526

    Article  MATH  Google Scholar 

  35. Hernquist L, Katz N (1989) TREESPH-A unification of SPH with the hierarchical tree method. Astrophys J Suppl Ser 70:419–446

    Article  Google Scholar 

  36. Voronoi G (1908) Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. Journal für die reine und angewandte Mathematik 133:97–178

    MathSciNet  MATH  Google Scholar 

  37. Fortune S (1987) A sweepline algorithm for Voronoi diagrams. Algorithmica 2(1–4):153–174

    Article  MathSciNet  MATH  Google Scholar 

  38. Dilts GA (2000) Moving least-squares particle hydrodynamics II: conservation and boundaries. Int J Numer Meth Eng 48(10):1503–1524

    Article  MathSciNet  MATH  Google Scholar 

  39. Randles PW, Libersky LD (1996) Smoothed particle hydrodynamics: some recent improvements and applications. Comput Methods Appl Mech Eng 139(1):375–408

    Article  MathSciNet  MATH  Google Scholar 

  40. Marrone S, Colagrossi A, Le Touzé D, Graziani G (2010) Fast free-surface detection and level-set function definition in SPH solvers. J Comput Phys 229(10):3652–3663

    Article  MATH  Google Scholar 

  41. Shibata K, Koshizuka S (2007) Numerical analysis of shipping water impact on a deck using a particle method. Ocean Eng 34(3–4):585–593

    Article  Google Scholar 

  42. Shibata K, Koshizuka S, Sakai M, Tanizawa K (2012) Lagrangian simulations of ship-wave interactions in rough seas. Ocean Eng 42:13–25

    Article  Google Scholar 

  43. Shearer JR, Cross JJ (1965) The experimental determination of the components of ship resistance for a mathematical model. Trans RINA 107:459–473

    Google Scholar 

  44. Takeshi H, Hino T, Hinatsu M, Tsukada Y, Fujisawa J (1987) ITTC cooperative experiments on Series 60 model at Ship research institute–flow measurements and resistance tests. Ship Res Inst Japan (Papers), 1–48

  45. Toda Y, Stern F, Longo J (1992) Mean-flow measurements in the boundary layer and wake and wave field of a series 60 CB = 0.6 ship model-Part 1: Froude numbers 0.16 and 0.316. IIHR Report No 352

Download references

Acknowledgments

We would like to thank the National Natural Science Foundation of China (Grant No. 51379040) for the financial support of our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Lu.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Hu, Ak. & Liu, Yc. A finite pointset method for the numerical simulation of free surface flow around a ship. J Mar Sci Technol 21, 190–202 (2016). https://doi.org/10.1007/s00773-015-0342-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00773-015-0342-1

Keywords

Navigation