Skip to main content
Log in

Optimization of the location of injector in urea-selective catalytic reduction system

  • Original article
  • Published:
Journal of Marine Science and Technology Aims and scope Submit manuscript

Abstract

Urea–water solution (UWS) has been widely used in selective catalytic reduction (SCR) system as reductant to generate ammonia. The position where UWS nozzle should be located is a concerned issue and worth a deep investigation. Although UWS droplet evaporates and decomposes once it has been sprayed from the nozzle, the decomposition of droplet may be still incomplete if the distance between nozzle and reactor is not long enough. Thus, the incomplete decomposed UWS droplets will collect at the entrance of reactor, which is not beneficial for droplet evaporation, system flow and SCR efficiency. This paper presents the position where UWS nozzle should be placed from the perspective of evaporation and decomposition of UWS droplet. A numerical model of UWS droplet evaporation and decomposition was established in this paper and the droplet displacement is solved by adding droplet motion equation to the simulation model. The results can provide a practical help for designing a urea-SCR system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A :

Pre-exponential factor, kg/(s m)

B m :

Spalding mass transfer number

B T :

Spalding heat transfer number

C D :

Drag coefficient

c p :

Heat capacity, J/(kg K)

D :

Droplet diameter, m

D c :

Mass diffusion coefficient, m2/s

E a :

Activation energy, J/mol

F :

Force, N

g :

Gravitational acceleration, m/s2

H :

Enthalpy of reaction, J/kg

h :

Heat transfer coefficient, W/(m2 K)

L :

Latent heat of vaporization, J/kg

M :

Molecular weight, kg/kmol

m :

Droplet mass, kg

m d :

Mass transfer rate, kg/(m2 s)

\(\dot{m}\) :

Mass flow, kg/s

P :

Pressure, Pa

\(\dot{Q}\) :

Heat transfer rate, W

R :

Universal gas constant, J/(mol K)

r :

Droplet radius, m

T :

Temperature, K

t :

Time, s

u :

Velocity, m/s

x :

Displacement, m

X :

Mole fraction

Y :

Mass fraction

∞:

Ambient

s:

Droplet surface

g:

Gas phase

mix:

Exhaust and water vapor mixture

d:

Droplet

l:

Liquid phase

vap:

Vaporize

u:

Urea

th:

Thermolysis

D:

Drag

B:

Buoyancy

Sphere:

Spherical droplet

i, j :

Species index

sat:

Saturation

a:

Air

w:

Water

u:

Urea

film:

Gaseous film

ρ :

Density, kg/m2

λ :

Heat conductivity, W/(m K)

\(\Phi\) :

Physical property

Nu:

Nusselt number

Re:

Reynolds number

Pr:

Prandtl number

References

  1. Yu J (2010) The study of urea decomposition and deposit formation in heavy duty diesel engine SCR system. SAE technical paper C2010P193

  2. Tian XN, Zhang WP, Xiao YH, Zhou PL (2012) Investigation on the effect of ammonia distribution on selective catalytic reduction efficiency. Asian J Chem 24(12):5889–5893

    Google Scholar 

  3. Smeets RGH, Calis HP, Lugt PM, van den Bleek CM (1996) Catalytic removal of NOx from total energy installation flue-gases: process design and development. Catal Today 29(1):133–137

    Article  Google Scholar 

  4. Abu-Ramadan E, Saha K, Li XG (2011) Modeling the depleting mechanism of urea-water-solution droplet for automotive selective catalytic reduction systems. AIChE J 57(11):3210–3225

    Article  Google Scholar 

  5. Lundström A, Andersson B, Olsson L (2009) Urea thermolysis studied under flow reactor conditions using DSC and FT-IR. Chem Eng J 150:544–550

    Article  Google Scholar 

  6. Yim SD, Kim SJ, Baik JH, Nam I, Mok YS, Lee JH, Cho B, Oh SH (2004) Decomposition of urea into NH3 for the SCR process. Ind Eng Chem Res 43:4856–4863

    Article  Google Scholar 

  7. Wang TJ, Baek SW, Lee SY (2009) Experimental investigation on evaporation of urea-water-solution droplet for SCR applications. AIChE J 55(12):3267–3276

    Article  Google Scholar 

  8. Koebel M, Elsener M, Kleemann M (2000) Urea-SCR: a promising technique to reduce NOx emissions from automotive diesel engines. Catal Today 59:335–345

    Article  Google Scholar 

  9. Koebel M, Madia G, Elsener M (2002) Selective catalytic reduction of NO and NO2 at low temperatures. Catal Today 73:239–247

    Article  Google Scholar 

  10. Ball JC (2001) A toxicological evaluation of potential thermal degradation products of urea. SAE technical paper 2001-01-3621

  11. Koebel M, Strutz EO (2003) Thermal and hydrolytic decomposition of urea for automotive selective catalytic reduction systems: thermo chemical and practical aspects. Ind Eng Chem Res 42:2093–2100

    Article  Google Scholar 

  12. Schaber PM, Colson J, Higgins S, Thielen D, Anspach B, Brauer J (2004) Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochim Acta 424:131–142

    Article  Google Scholar 

  13. Schaber PM, Colson J, Higgins S, Dietz E, Thielen D, Anspach B, Brauer J (1999) Study of the urea thermal decomposition (pyrolysis) reaction and importance to cyanuric acid production. Am Lab 31(16):13–21

    Google Scholar 

  14. Fang HL, DaCosta HFM (2003) Urea thermolysis and NOx reduction with and without SCR catalysts. Appl Catal B Environ 46:17–34

    Article  Google Scholar 

  15. Stradella L, Argentero M (1993) A study of the thermal decomposition of urea, of related compounds and thiourea using DSC and TG–EGA. Thermochim Acta 219:315–323

    Article  Google Scholar 

  16. Kleemann M, Elsener M, Koebel M, Wokaun A (2000) Hydrolysis of isocyanic acid on SCR catalysts. Ind Eng Chem Res 39(11):4120–4126

    Article  Google Scholar 

  17. Alzueta MU, Bilbao R, Millera A, Oliva M, Ibanez JC (2000) Impact of new findings concerning urea thermal decomposition on the modeling of the urea SNCR process. Energy Fuels 14(2):509–510

    Article  Google Scholar 

  18. Birkhold F, Meingast U, Wassermann P, Deutschmann O (2006) Analysis of the injection of urea-water-solution for automotive SCR DeNOx systems: modeling of two-phase flow and spray/wall-interaction. SAE technical paper 2006-01-0643

  19. Birkhold F, Meingast U, Wassermann P, Deutschmann O (2007) Modeling and simulation of the injection of urea-water-solution for automotive SCR DeNOx-systems. Appl Catal B Environ 70:119–127

    Article  Google Scholar 

  20. Zanoelo EF (2009) A lumped model for thermal decomposition of urea Uncertainties analysis and selective non-catalytic reduction of NO. Chem Eng Sci 64:1075–1084

    Article  Google Scholar 

  21. Ebrahimian V, Nicolle A, Habchi C (2012) Detailed modeling of the evaporation and thermal decomposition of urea-water solution in SCR systems. AIChE J 58(7):1998–2009

    Article  Google Scholar 

  22. Ström H, Lundström A, Andersson B (2009) Choice of urea-spray models in CFD simulations of urea-SCR systems. Chem Eng J 150:69–82

    Article  Google Scholar 

  23. Oh TY, Ko JH, Seong HJ, Min BS (2004) Design optimization of the mixing chamber in SCR system for marine diesel engine. In: Proceedings of the 6th international symposium on diagnostics and modeling of combustion in internal combustion engines, vol 6, pp 87–92

  24. Sun WH, Boyle JM, Carmignani PG, Sassenrath JM (2001) Small scale test results from new selective catalytic NOx reduction process using urea. In: Proceedings of the MEGA symposium, Chicago

  25. Calabrese JL, Patchett JA, Grimston K, Rice GW, Davis GW (2000) The influence of injector operating conditions on the performance of a urea–water selective catalytic reduction (SCR) system. SAE technical paper 2000-01-2814

  26. Horvat K (2007) Computational modeling of spray impingent accounting for the wall film formation. Shaker Verlag GmbH, Germany

    Google Scholar 

  27. Wurzenberger JC, Wanker R (2005) Multi-scale SCR modeling, 1D kinetic analysis and 3D system simulation. SAE technical paper 2005-01-0948

  28. Schiller L, Naumann AZ (1993) A drag coefficient correlation. VDI 77:318–320

    Google Scholar 

  29. Xu JL, Chen TK, Chen XZ (1992) A study of water-drop evaporation constants. J Eng Therm Energy Power (China) 7(5):268–271

    Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundation of China (Grant No: 51109049) and China postdoctoral Science Foundation (Grant No: 2011M500641).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youhong Xiao.

About this article

Cite this article

Tian, X., Xiao, Y., Zhou, P. et al. Optimization of the location of injector in urea-selective catalytic reduction system. J Mar Sci Technol 20, 238–248 (2015). https://doi.org/10.1007/s00773-014-0267-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00773-014-0267-0

Keywords

Navigation