Skip to main content
Log in

Numerical calculations of propeller shaft loads on azimuth propulsors in oblique inflow

  • Original article
  • Published:
Journal of Marine Science and Technology Aims and scope Submit manuscript

Abstract

This paper evaluates various computational methods used to compute propeller performance, hydrodynamic side force and bending moment applied to an azimuth propulsor propeller shaft in oblique inflow. The two non-viscous models used are the BEM method and the blade element momentum theory (BEMT). RANS calculations are used to compute the loads on the propeller and the nominal wake velocity from the thruster body to be used in the BEMT model. The effect of the ship hull is also considered in the calculation by implementing the measured nominal wake of a ship hull at different propeller azimuthal positions. All the models are compared and validated against the experimental results, and the discussions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50

Similar content being viewed by others

Abbreviations

D p :

Propeller diameter

f z :

Vertical force on propeller

f y :

Lateral force on propeller

\( K_{T} = \frac{T}{{\rho n^{2} D_{\text{p}}^{4} }} \) :

Propeller thrust coefficient

\( K_{Q} = \frac{Q}{{\rho n^{2} D_{\text{p}}^{5} }} \) :

Propeller torque coefficient

\( K_{{f_{y} }} = \frac{{f_{y} }}{{\rho n^{2} D_{\text{p}}^{4} }} \) :

Propeller lateral force coefficient

\( K_{{f_{z} }} = \frac{{f_{z} }}{{\rho n^{2} D_{\text{p}}^{4} }} \) :

Propeller vertical force coefficient

\( K_{{m_{y} }} = \frac{{m_{y} }}{{\rho n^{2} D_{\text{p}}^{5} }} \) :

Propeller lateral moment coefficient

\( K_{{m_{z} }} = \frac{{m_{z} }}{{\rho n^{2} D_{\text{p}}^{5} }} \) :

Propeller vertical moment coefficient

\( m_{y} \) :

Propeller lateral moment

\( m_{z} \) :

Propeller vertical moment

n :

Shaft rotational speed

Q :

Propeller torque

R :

Propeller radius

r :

Blade element radial distance

T :

Propeller thrust

u 0 :

Propeller average axial induced velocity

u i :

Blade element axial induced velocity

V a :

Advance velocity

χ:

Wake skew angle

\( J = \frac{{V_{\text{a}} }}{{nD_{\text{p}} }} \) :

Advance coefficient

ψ:

Propeller circumferential angle

F t :

Blade tangential force

k l :

Lift coefficient empirical factor

k d :

Drag coefficient empirical factor

L :

Lift force

\( \bar{T} \) :

Annular ring thrust

\( \bar{u}_{0} \) :

Annular ring average axial induced velocity

β:

Inflow angle

η:

Blade element camber

V R :

Resultant velocity

c :

Blade element chord

C p :

Pressure coefficient

c f :

Frictional coefficient

C D :

Drag coefficient

C L :

Lift coefficient

D :

Drag force

δ:

Propeller heading angle

References

  1. Amini H, Steen S, Spence J (2010) Shaft side force and bending moment on steerable thrusters in off-design condition. In: 11th international symposium on practical design of ships and other floating structures (PRADS 2010), Rio de janeiro, Brazil

  2. Amini H, Steen S (2011) Loads on the Azimuth propulsors shaft in oblique inflow and waves. Int J Marit Eng 153: Part A1 (published in transaction RINA)

  3. Achkinadze AS, Berg A, Krasilinkov VI, Stepanov IE (2003) Numerical analysis of podded and steering systems using a velocity based source boundary element method with modified trailing edge. In: Paper submitted on the propellers/shafting’2003 symposium, Virginia Beach, VA, USA, September 17–18

  4. Krasilnikov V, Zhang Z, Hong F (2009) Analysis of unsteady propeller blade forces by RANS. In: First international symposium on marine propulsors smp’09, Trondheim, Norway

  5. Lobatchev MP, Chicherine IA (2001) The full scale estimation for podded propulsion system by RANS method. In: Lavrentiev lectures, St. Petersburg, Russia, 19–21 June, pp 39–44

  6. Phillips AB, Turnocka SR, Furlong M (2009) Evaluation of manoeuvring coefficients of a self-propelled ship using a blade element momentum propeller model coupled to a Reynolds averaged Navier Stokes flow solver. J Ocean Eng 36:15–16, 1217–1225

    Google Scholar 

  7. Liu P, Islam M, Veitch B (2009) Some unsteady propulsive characteristics of a podded propeller unit under maneuvering operation. In: First international symposium on marine propulsors smp’09, Trondheim, Norway

  8. Glauert H (1935) Airplane propellers. In: Durand WF (ed) Aerodynamic theory. Julius Springer, Berlin

    Google Scholar 

  9. Coleman RP, Feingold AM, Stempin CW (1945) Evaluation of the induced velocity field of an idealised helicopter rotor. N.A.C.A. A.R.R. No. L5E10

  10. Pitt DM, Peters DA (1981) Theoretical prediction of dynamic inflow derivatives. Vertica 5:21–34

    Google Scholar 

  11. Hoerner SF, Borst HV (1985) Fluid–dynamic lift. Hoerner publisher, LA

    Google Scholar 

  12. Hoerner SF (1992) Fluid-dynamic drag. Hoerner publisher, LA

    Google Scholar 

  13. Young TS, Dunald F (1999) Dynamic effects on propellers blade section lift, drag, and pitching moment coefficients. In: Hydrodynamic directorate research and development report, Navl surface Water Centre, Craderoc Division, Report no CRDKNSWC/HD-1205-0

  14. Amini H, Steen S (2011) Experimental and theoretical analysis of the propeller shaft loads in oblique inflow. J Ship Res (to be appeared)

  15. Koushan K, Krasilnikov VI (2008) Experimental and numerical investigation of open thrusters in oblique flow conditions. In: Proceedings of the 27th ONR symposium on naval hydrodynamics, October 5–10, Seoul, Korea

Download references

Acknowledgments

This research is sponsored by The Research Council of Norway at The University Technology Centre of Rolls Royce at NTNU through the research project SeaPro. This project was partially supported by the Norwegian HPC project NOTUR that granted access to its computer facilities. The assistance of Dr. Vladimir Krasilnikov with performing the BEM method calculations is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Amini.

About this article

Cite this article

Amini, H., Sileo, L. & Steen, S. Numerical calculations of propeller shaft loads on azimuth propulsors in oblique inflow. J Mar Sci Technol 17, 403–421 (2012). https://doi.org/10.1007/s00773-012-0176-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00773-012-0176-z

Keywords

Navigation