Skip to main content
Log in

Freakish sea index and sea states during ship accidents

  • Original Article
  • Published:
Journal of Marine Science and Technology Aims and scope Submit manuscript

Abstract

Sea states during seven marine accidents near Japan reported in the media were analyzed using a third-generation wave model. Based on the estimated evolution of the directional wave spectrum, a narrowing of the directional spectrum was suggested for five cases. Based on earlier studies in laboratory tanks, the narrowing of the directional spectrum may be associated with increased probability of freak waves at the time of the accident. A diagram mapping the frequency bandwidth and directional spread proved useful as a diagnostic tool. This freakish sea index was compared against recently conducted ocean wave observations. The accident causes are discussed in the context of slamming, green sea loading, loss of stability, broaching and other possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

H :

Wave height

H s :

Significant wave height

H max :

Maximum wave height

a :

(\( = H/2 \)) wave amplitude

k:

\( \left( { = {{2\pi } \mathord{\left/ {\vphantom {{2\pi } {\lambda_{m} }}} \right. \kern-\nulldelimiterspace} {\lambda_{m} }}} \right) \) wave number

ak :

Steepness

\( \delta f \) :

Frequency bandwidth

\( f_{0} \) :

Peak frequency

AI :

(\( = H_{\max } /H_{s} \)) abnormality index

BFI :

Benjamin-Feir Index

\( BFI_{eff} \) :

Effective BFI

\( \varepsilon_{eff} \) :

Effective steepness (ak times reduction factor along resonance loci)

\( \left( {\delta k,\delta \,l} \right) \) :

Perturbation wave number (derived from the directional spectrum)

\( F\left( {\sigma ,\theta } \right) \) :

Wave spectrum

\( \sigma \) :

(\( = {{2\pi } \mathord{\left/ {\vphantom {{2\pi } f}} \right. \kern-\nulldelimiterspace} f} \)) angular frequency

\( \theta \) :

Wave direction

\( Q_{p} \) :

Goda’s parameter

\( m_{0} \) :

Total energy

\( G(\theta ;f) \) :

Directional spreading function

\( K(\theta ;f) \) :

Normalized directional spreading function s.t. \( \max \left[ {K(\theta ;f)} \right] = 1 \)

\( A \) :

Integral width defined as \( A \cdot K(\theta ;f) \equiv G(\theta ;f) \)

References

  1. Kharif C, Pelinovsky E, Slunyaev A (2009) Rogue waves in the ocean, Springer, p 219

  2. Janssen PAEM (2003) Nonlinear four-wave interactions and freak waves. J Phy Oceanogr 33:863–884

    Article  Google Scholar 

  3. Onorato M, Osborne AR, Serio M, Cavaleri L, Brandini C, Stansberg CT (2004) Observation of strongly non-Gaussian statistics for random sea surface gravity waves in wave flume experiments. Phys Review E 70:067302

    Article  Google Scholar 

  4. Alber IE (1978) The effects of randomness on the stability of two-dimensional surface wavetrains. Proc R Soc Lond A 363:525–546

    Google Scholar 

  5. Yuen H, Lake B (1982) Nonlinear dynamics of deep-water gravity waves. Adv Appl Mech 22:67–229

    Google Scholar 

  6. Soquet-Juglard H, Dysthe K, Trulsen K, Krogstat H, Liu J (2005) Probability distribution of surface gravity waves during spectral changes. J Fluid Mech 542:195–216

    Article  MathSciNet  Google Scholar 

  7. Dysthe K, Krogstad HE, Müller P (2008) Oceanic rogue waves. Annu Rev Fluid Mech 40:287–310. doi:10.1146/annurev.fluid.40.111406.102203

    Article  Google Scholar 

  8. Gramstad O, Trulsen K (2007) Influence of crest and group length on the occurrence of freak waves. J Fluid Mech 582:463–472. doi:10.1017/S0022112007006507

    Article  MathSciNet  MATH  Google Scholar 

  9. Mori N, Onorato M, Janssen PAEM (2011) On the estimation of the kurtosis in directional sea states for freak wave forecasting. J Phys Oceanogr 41(8):1484–1497. doi:10.1175/2011JPO4542.1

    Article  Google Scholar 

  10. Onorato M, Cavaleri L, Sébastien F, Gramstad O, Janssen PAEM, Monbaliu J, Osborne AR, Pákozdi C, Serio M, Stansberg CT, Toffoli A, Trulsen K (2009) Statistical properties of mechanically generated surface gravity waves: a laboratory experiment in a three-dimensional wave basin. J Fluid Mech 627:235–257

    Article  MATH  Google Scholar 

  11. Onorato M, Waseda T, Toffoli A, Cavaleri L, Gramstad O, Janssen PAEM, Kinoshita T, Monbaliu J, Mori N, Osborne AR, Serio M, Stansberg CT, Tamura H, Trulsen K (2009) On the statistical properties of directional ocean waves: the role of the modulational instability in the formation of extreme events. Phys Rev Lett 102(11):114502

    Article  Google Scholar 

  12. Waseda T, Kinoshita T, Tamura H (2009) Evolution of a random directional wave and freak wave occurrence. J Phys Oceanogr 39(3):621–639

    Article  Google Scholar 

  13. Waseda T, Kinoshita T, Tamura H (2009) Interplay of resonant and quasi-resonant interaction of the directional ocean waves. J Phys Oceanogr 39:2351–2362

    Article  Google Scholar 

  14. Onorato M, Osborne AR, Serio M (2002) Extreme wave events in directional, random oceanic sea states. Phys Fluids 14(4):25–28

    Article  MathSciNet  Google Scholar 

  15. Toffoli A, Gramstad O, Trulsen K, Monbaliu J, Bitner-Gregersen E, Onorato M (2010) Evolution of weakly nonlinear random directional waves: laboratory experiments and numerical simulations. J Fluid Mech 664:313–336. doi:10.1017/S002211201000385X

    Article  MathSciNet  MATH  Google Scholar 

  16. Waseda T, Sinchi M, Nishida T, Tamura H, Miyazawa Y, Kawai Y, Ichikawa H, Tomita H, Nagano A, Taniguchi K (2011a) GPS-based wave observation using a moored oceanographic buoy in the deep ocean. In: Proceedings of the 21st international offshore and polar engineering conference, Maui, Hawaii, USA, 19–24 June 2011

  17. Waseda T, Hallerstig M, Ozaki K, Tomita H (2011) Enhanced freak wave occurrence with narrow directional spectrum in the North Sea. Geophys Res Lett 38:L13605. doi:10.1029/2011GL047779

    Article  Google Scholar 

  18. Tamura H, Waseda T, Miyazawa Y (2009) Freakish sea state and swell-windsea coupling: numerical study of the Suwa-Maru incident. Geophys Res Lett 36:L01607

    Article  Google Scholar 

  19. Toffoli A, Lefèvre JM, Bitner-Gregersen E, Monbaliu J (2005) Towards the identification of warning criteria: Analysis of a ship accident database. Appl Ocean Res 27(6):281–291. doi:10.1016/j.apor.2006.03.003 (ISSN 0141-1187)

    Article  Google Scholar 

  20. Nikolkina I, Didenkulova I (2012) Catalogue of rogue waves reported in media in 2006–2010. Nat Hazards 61(3):989–1006

    Google Scholar 

  21. Mori N, Janssen PAEM (2006) On kurtosis and occurrence probability of freak waves. J Phys Oceanogr 36(7):1471–1483

    Article  Google Scholar 

  22. Babanin AV, Soloviev YP (1998) Variability of directional spectra of wind-generated waves, studied by means of wave staff arrays. Mar Freshwater Res 49:89–101

    Article  Google Scholar 

  23. Toffoli A, Chai S, Bitner-Gregersen EM, Pistani F (2011) Probability of occurrence of extreme waves in three dimensional mechanically generated random wave fields: comparison with numerical simulations. In: 30th international conference on ocean, offshore and Arctic engineering (OMAE2011), 19–24 June 2011, Rotterdam, The Netherlands, OMAE2011-49198, pp 143–150

  24. Forristall GZ, Ewans KC (1998) Worldwide measurements of directional wave spreading. J Atmos Oceanic Technol 15:440–469

    Article  Google Scholar 

  25. Tamura H, Waseda T, Miyazawa Y, Komatsu K (2008) Current-induced modulation of the ocean wave spectrum and the role of nonlinear energy transfer. J Phys Oceanogr 38:2662–2684

    Article  Google Scholar 

  26. In K, Waseda T, Kiyomatsu K, Tamura H, Miyazawa Y, Iyama K (2009) Analysis of a marine accident and freak wave prediction with an operational wave model. In: Proceedings of the 19th international offshore and polar engineering conference, Osaka, Japan, 21–26 June 2009

  27. Tamura H, Waseda T, Miyazawa Y (2010) Impact of the nonlinear energy transfer on the wave field in the Pacific hindcast experiment. J Geophys Res 115:C12036. doi:10.1029/2009JC006014

    Article  Google Scholar 

  28. Yamamoto Y, Fujino M, Ohtsubo H, Fukasawa T, Iwai Y, Aoki G, Watanabe I, Ikeda H, Kumano A, Kuroiwa T (1984) Disastrous damage of a bulk carrier due to slamming. Naval Architecture and Ocean Engineering, Society of Naval Architects of Japan 22:159–169

    Google Scholar 

  29. Shi J, Nakasumi S, Kameoka H, Waseda T, Suzuki K, Kinoshita T (2006) Experimental investigation of longitudinal bending moments of large container ship due to freak wave. In: Conference proceedings of the Japan society of naval architects and ocean engineers, vol 2, pp 123–124

  30. Shi J, Waseda T, Suzuki K, Kinoshita T, Yuhara T (2006) Wave loads on container ship in freak waves. In: Conference proceedings of the Japan society of naval architects and ocean engineers, vol 3, pp 379–380

Download references

Acknowledgments

We thank Kazuhisa In who has set up the Japan regional wave model. We also thank the two anonymous reviewers for their constructive comments. This work was supported by a Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuji Waseda.

About this article

Cite this article

Waseda, T., Tamura, H. & Kinoshita, T. Freakish sea index and sea states during ship accidents. J Mar Sci Technol 17, 305–314 (2012). https://doi.org/10.1007/s00773-012-0171-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00773-012-0171-4

Keywords

Navigation