Skip to main content

Advertisement

Log in

Strahleninduzierte Chromosomenveränderungen und DNA Reparaturmechanismen

Teil II: DNA-Reparaturmechanismen

Radiation-induced chromosomal alterations and DNA-repair mechanisms

Part II: DNA repair mechanisms

  • Netzwerk Grundlagenforschung
  • Published:
Gefässchirurgie Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Blokzijl F, de Ligt J, Jager M et al (2016) Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538:260–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chang HHY, Pannunzio NR, Adachi N et al (2017) Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol 18:495–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cuella-Martin R, Oliveira C, Lockstone HE et al (2016) 53BP1 Integrates DNA Repair and p53-Dependent Cell Fate Decisions via Distinct Mechanisms. Mol Cell 64:51–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Erhart P, Scherthan H, Beinke C et al (2023) Strahleninduzierte Chromosomenveränderungen und DNA-Reparaturmechanismen – Teil I Biologische Dosimetrie. Gefässchirurgie. https://doi.org/10.1007/s00772-023-01005-4

    Article  Google Scholar 

  5. Hafner A, Bulyk ML, Jambhekar A et al (2019) The multiple mechanisms that regulate p53 activity and cell fate. Nat Rev Mol Cell Biol 20:199–210

    Article  CAS  PubMed  Google Scholar 

  6. Hoeijmakers JH (2009) DNA damage, aging, and cancer. N Engl J Med 361:1475–1485

    Article  CAS  PubMed  Google Scholar 

  7. Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461:1071–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Khil PP, Camerini-Otero RD (2002) Over 1000 genes are involved in the DNA damage response of Escherichia coli. Mol Microbiol 44:89–105

    Article  CAS  PubMed  Google Scholar 

  9. Kumari R, Jat P (2021) Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Front Cell Dev Biol 9:645593

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715

    Article  CAS  PubMed  Google Scholar 

  11. Mcvey M, Lee SE (2008) MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet 24:529–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rong Z, Tu P, Xu P et al (2021) The Mitochondrial response to DNA damage. Front Cell Dev Biol 9:669379

    Article  PubMed  PubMed Central  Google Scholar 

  13. Schumacher B, Pothof J, Vijg J et al (2021) The central role of DNA damage in the ageing process. Nature 592:695–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14:e1002533

    Article  PubMed  PubMed Central  Google Scholar 

  15. Thompson LH (2012) Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat Res 751:158–246

    Article  CAS  PubMed  Google Scholar 

  16. Tubbs A, Nussenzweig A (2017) Endogenous DNA damage as a source of genomic instability in cancer. Cell 168:644–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yousefzadeh M, Henpita C, Vyas R et al (2021) DNA damage-how and why we age? Elife. https://doi.org/10.7554/eLife.62852

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhao B, Rothenberg E, Ramsden DA et al (2020) The molecular basis and disease relevance of non-homologous DNA end joining. Nat Rev Mol Cell Biol 21:765–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dihlmann.

Ethics declarations

Interessenkonflikt

S. Dihlmann, H. Scherthan, C. Beinke, C. Grond-Ginsbach, D. Böckler und P. Erhart geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dihlmann, S., Scherthan, H., Beinke, C. et al. Strahleninduzierte Chromosomenveränderungen und DNA Reparaturmechanismen. Gefässchirurgie 28, 447–454 (2023). https://doi.org/10.1007/s00772-023-01019-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00772-023-01019-y

Navigation