Skip to main content
Log in

Überwachung von motorisch evozierten Potenzialen

Ein Diagnostik- und Strategie-Tool zur Vermeidung von neurologischen Komplikationen

Motor-evoked potentials monitoring

A diagnostic and strategic tool for avoidance of neurological complications

  • Leitthema
  • Published:
Gefässchirurgie Aims and scope Submit manuscript

Zusammenfassung

Die spinale Ischämie im Rahmen von thorakoabdominellen Aortenersatzeingriffen ist mit postoperativen Paresen und Paraplegien vergesellschaftet. Obwohl konventionelle Maßnahmen zum Schutz der perioperativen Rückenmarkperfusion getroffen werden, bleibt das Risiko für neurologische Komplikationen sowohl nach offenen als auch nach endovaskulären Aorteneingriffen relevant. Das neurophysiologische Monitoring von motorisch evozierten Potenzialen erlaubt auf nichtinvasive Art die Früherkennung von Störungen der Rückenmarkintegrität und kann somit intraoperative Strategien zum Schutz des Rückenmarks ermöglichen. Für die Rückenmarkversorgung relevante Interkostalarterien können mithilfe des Neuromonitorings identifiziert und in der aortalen Rekonstruktion in Form von Bypässen integriert werden. Auch in der endovaskulären Aortenchirurgie kann eine Gefährdung der Rückenmarkperfusion frühzeitig erkannt werden. Allerdings, aufgrund adaptierter endovaskulärer Versorgungsstrategien, erfährt das Neuromonitoring klinisch und wissenschaftlich nicht die gleiche Akzeptanz wie in der offenen Aortenchirurgie.

Abstract

Spinal ischemia during thoracoabdominal aortic interventions is associated with postoperative paresis and paraplegia. Although conventional measures for protection of perioperative spinal cord perfusion are initiated, there is still a relevant risk of neurological complications with both open and endovascular aortic interventions. Neurophysiological monitoring of motor-evoked potentials enables the early recognition of disorders of spinal cord integrity in a noninvasive manner and can therefore make intraoperative strategies for protection of the spinal cord possible. Intercostal arteries relevant for perfusion of the spinal cord can be identified by neuromonitoring and can be integrated into the aortic reconstruction in the form of bypasses. A threat to spinal cord perfusion can also be recognized at an early stage in endovascular aortic surgery; however, due to adapted endovascular treatment strategies, neuromonitoring has not been clinically and scientifically accepted, as is the case with open aortic surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1

Literatur

  1. Banga PV, Oderich GS, Reis De Souza L et al (2016) Neuromonitoring, cerebrospinal fluid drainage, and selective use of Iliofemoral conduits to minimize risk of spinal cord injury during complex endovascular aortic repair. J Endovasc Ther 23:139–149

    Article  Google Scholar 

  2. Bischoff MS, Brenner RM, Scheumann J et al (2012) Staged approach for spinal cord protection in hybrid thoracoabdominal aortic aneurysm repair. Ann Cardiothorac Surg 1:325–328

    PubMed  PubMed Central  Google Scholar 

  3. Conrad MF, Crawford RS, Davison JK et al (2007) Thoracoabdominal aneurysm repair: a 20-year perspective. Ann Thorac Surg 83:S856–861 (discussion S890–852)

    Article  Google Scholar 

  4. Coselli JS, Lemaire SA, Köksoy C et al (2002) Cerebrospinal fluid drainage reduces paraplegia after thoracoabdominal aortic aneurysm repair: Results of a randomized clinical trial. J Vasc Surg 35:631–639

    Article  Google Scholar 

  5. Coselli JS, Lemaire SA, Preventza O et al (2016) Outcomes of 3309 thoracoabdominal aortic aneurysm repairs. J Thorac Cardiovasc Surg 151:1323–1337

    Article  Google Scholar 

  6. Doukas P, Gombert A, Drosos K et al (2022) Motor evoked potential (MEP)-guided segmental artery revascularization during open TAAA surgery after coil-embolization as a part of the MIS2ACE concept. J Vasc Surg Cases Innov Tech 8(2):206–209. https://doi.org/10.1016/j.jvscit.2022.02.004

    Article  PubMed  PubMed Central  Google Scholar 

  7. Etz CD, Debus ES, Mohr FW et al (2015) First-in-man endovascular preconditioning of the paraspinal collateral network by segmental artery coil embolization to prevent ischemic spinal cord injury. J Thorac Cardiovasc Surg 149:1074–1079

    Article  Google Scholar 

  8. Etz CD, Halstead JC, Spielvogel D et al (2006) Thoracic and thoracoabdominal aneurysm repair: is reimplantation of spinal cord arteries a waste of time? Ann Thorac Surg 82:1670–1677

    Article  Google Scholar 

  9. Etz CD, Kari FA, Mueller CS et al (2011) The collateral network concept: a reassessment of the anatomy of spinal cord perfusion. J Thorac Cardiovasc Surg 141:1020–1028

    Article  Google Scholar 

  10. Fleck TM, Czerny M, Hutschala D et al (2003) The incidence of transient neurologic dysfunction after ascending aortic replacement with circulatory arrest. Ann Thorac Surg 76:1198–1202

    Article  Google Scholar 

  11. Gailloud P, Gregg L, Galan P et al (2015) Periconal arterial anastomotic circle and posterior lumbosacral watershed zone of the spinal cord. J NeuroIntervent Surg 7:848–853

    Article  Google Scholar 

  12. Gombert A, Frankort J, Keszei A et al (2022) Outcome of Elective and Emergency Open Thoraco-Abdominal Aortic Aneurysm Repair in 255 Cases: a Retrospective Single Centre Study. Eur J Vasc Endovascular Surg 63(4):578–586. https://doi.org/10.1016/j.ejvs.2022.02.003

    Article  Google Scholar 

  13. Jacobs MJ, Mess W, Mochtar B et al (2006) The value of motor evoked potentials in reducing paraplegia during thoracoabdominal aneurysm repair. J Vasc Surg 43:239–246

    Article  Google Scholar 

  14. Jacobs MJ, Mess W, Mochtar B et al (2006) The value of motor evoked potentials in reducing paraplegia during thoracoabdominal aneurysm repair. J Vasc Surg 43:239–246

    Article  Google Scholar 

  15. Jorge A, Fish EJ, Dixon CE et al (2019) The effect of prophylactic hypothermia on neurophysiological and functional measures in the setting of iatrogenic spinal cord impact injury. World Neurosurg 129:e607–e613

    Article  Google Scholar 

  16. Kotelis D, Geisbüsch P, Von Tengg-Kobligk H et al (2008) Paraplegia after endovascular repair of the thoracic and thoracoabdominal aorta. Zentralbl Chir 133:338–343

    Article  CAS  Google Scholar 

  17. Lips J, De Haan P, De Jager SW et al (2002) The role of transcranial motor evoked potentials in predicting neurologic and histopathologic outcome after experimental spinal cord ischemia. Anesthesiology 97:183–191

    Article  Google Scholar 

  18. Luehr M, Salameh A, Haunschild J et al (2014) Minimally invasive segmental artery coil embolization for preconditioning of the spinal cord collateral network before one-stage descending and thoracoabdominal aneurysm repair. Innovations 9:60–65

    Article  Google Scholar 

  19. Macdonald DB, Skinner S, Shils J et al (2013) Intraoperative motor evoked potential monitoring—a position statement by the American Society of Neurophysiological Monitoring. Clin Neurophysiol 124:2291–2316

    Article  CAS  Google Scholar 

  20. Marini CP, Levison J, Caliendo F et al (1998) Control of proximal hypertension during aortic cross-clamping: its effect on cerebrospinal fluid dynamics and spinal cord perfusion pressure. Semin Thorac Cardiovasc Surg 10:51–56

    Article  CAS  Google Scholar 

  21. Marsala M, Sorkin LS, Yaksh TL (1994) Transient spinal Ischemia in rat: characterization of spinal cord blood flow, extracellular amino acid release, and concurrent histopathological damage. J Cereb Blood Flow Metab 14:604–614

    Article  CAS  Google Scholar 

  22. Meylaerts SA, De Haan P, Kalkman CJ et al (1999) The influence of regional spinal cord hypothermia on transcranial myogenic motor-evoked potential monitoring and the efficacy of spinal cord ischemia detection. J Thorac Cardiovasc Surg 118:1038–1045

    Article  CAS  Google Scholar 

  23. Meylaerts SA, Jacobs MJ, Van Iterson V et al (1999) Comparison of transcranial motor evoked potentials and somatosensory evoked potentials during thoracoabdominal aortic aneurysm repair. Ann Surg 230:742–749

    Article  CAS  Google Scholar 

  24. Peppelenbosch N, Cuypers PWM, Vahl AC et al (2005) Emergency endovascular treatment for ruptured abdominal aortic aneurysm and the risk of spinal cord ischemia. J Vasc Surg 42:608–614

    Article  Google Scholar 

  25. Riambau V, Bockler D, Brunkwall J et al (2017) Editor’s choice—management of descending thoracic aorta diseases: clinical practice guidelines of the European society for vascular surgery (ESVS). Eur J Vasc Endovasc Surg 53:4–52

    Article  CAS  Google Scholar 

  26. Rocha RV, Lindsay TF, Austin PC et al (2021) Outcomes after endovascular versus open thoracoabdominal aortic aneurysm repair: a population-based study. J Thorac Cardiovasc Surg 161:516–527.e6

    Article  Google Scholar 

  27. Ter Wolbeek C, Hartert M, Conzelmann LO et al (2010) Value and pitfalls of neurophysiological monitoring in thoracic and thoracoabdominal aortic replacement and endovascular repair. Thorac Cardiovasc Surg 58:260–264

    Article  CAS  Google Scholar 

  28. Verhoeven ELG, Katsargyris A, Bekkema F et al (2015) Editor’s choice—ten-year experience with endovascular repair of thoracoabdominal aortic aneurysms: results from 166 consecutive patients. Eur J Vasc Endovasc Surg 49:524–531

    Article  CAS  Google Scholar 

  29. Wortmann M, Böckler D, Geisbüsch P (2017) Perioperative cerebrospinal fluid drainage for the prevention of spinal ischemia after endovascular aortic repair. Gefässchirurgie 22:35–40

    Article  CAS  Google Scholar 

  30. Wynn MM, Acher CW (2014) A modern theory of spinal cord Ischemia/injury in thoracoabdominal aortic surgery and its implications for prevention of paralysis. J Cardiothorac Vasc Anesth 28:1088–1099

    Article  Google Scholar 

  31. Zhu P, Li JX, Fujino M et al (2013) Development and treatments of inflammatory cells and cytokines in spinal cord ischemia-reperfusion injury. Mediators Inflamm 2013:701970. https://doi.org/10.1155/2013/701970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis Doukas.

Ethics declarations

Interessenkonflikt

P. Doukas, A. Gombert und M. Jacobs geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doukas, P., Gombert, A. & Jacobs, M. Überwachung von motorisch evozierten Potenzialen. Gefässchirurgie 27, 356–360 (2022). https://doi.org/10.1007/s00772-022-00909-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00772-022-00909-x

Schlüsselwörter

Keywords

Navigation