Skip to main content

Advertisement

Log in

Moderne Sequenzierungsmethoden: Neue Möglichkeiten für die Gefäßmedizin – auch bei kleiner Probenzahl?

Modern sequencing methods: new possibilities for vascular medicine even with small sample sizes?

  • Leitthema
  • Published:
Gefässchirurgie Aims and scope Submit manuscript

Zusammenfassung

In der modernen Gefäßchirurgie ergibt sich durch die Verfügbarkeit auch die Notwendigkeit, das perioperativ gewonnene Patientenmaterial (Gewebe, Blut) wissenschaftlich zu untersuchen. Dabei wird der Fokus in der Forschung immer mehr auf Sequenzierungen gelegt. Neben den klassischen Genom- (GWAS, WES) und Bulk-RNA-Sequenzierungen, die oft große und homogene Kohorten verlangen, erhalten auch immer mehr neue, komplexere „Einzel-Zell“-Sequenzierungsmethoden Einzug in die gefäßmedizinische Grundlagenforschung. Diese kommen oft mit kleineren Kohortengrößen aus, da nicht mehr ein Datensatz pro Gewebe, sondern ein Datensatz pro Zelle erstellt wird. Auch epigenetische Sequenzierungen und die Analyse hereditärer Merkmale mittels DNA-Sequenzierung werden immer häufiger und regelmäßiger in der Gefäßchirurgie durchgeführt. Bei Projekten mit geplanten Sequenzierungen ist die enge Kommunikation und Zusammenarbeit zwischen Patienten-versorgenden Ärzten, Biobanken und Wissenschaftlern wichtig. Für die Analyse der Daten ist bioinformatische/mathematische Unterstützung notwendig. Zusammen mit dem Phänotyp des Patienten lässt sich so ein ganzheitlicheres Bild der vaskulären Erkrankungen darstellen.

Abstract

In modern vascular surgery the availability of perioperatively obtained patient material (tissue, blood) makes basic research almost a must. Research is increasingly focusing on results from different sequencing techniques. In addition to the classical genome (genome-wide association studies, GWAS and whole exome sequencing, WES) and bulk RNA sequencing, which often require large and homogeneous cohorts, more and more new, more complex single cell sequencing methods are finding their way into basic research in vascular medicine. In particular, with these new methods smaller cohort sizes are often sufficient as one dataset per cell is created instead of just one dataset per tissue. Epigenetic sequencing and the analysis of hereditary characteristics using DNA sequencing are also performed more and more frequently in vascular surgery. In projects with sequencing involved, close communication and cooperation between physicians, biobanks and scientists is extremely important. Support from bioinformatics and mathematics is required for analysis of the data. Together with the patient’s phenotype a more holistic picture of vascular diseases can be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Anonymous (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678

  2. Bakker MK, Van Der Spek RAA, Van Rheenen W et al (2021) Author correction: genome-wide association study of intracranial aneurysms identifies 17 risk loci and genetic overlap with clinical risk factors. Nat Genet 53:254

    Article  CAS  Google Scholar 

  3. Barrett T, Wilhite SE, Ledoux P et al (2013) NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res 41:D991–D995

    Article  CAS  Google Scholar 

  4. Buenrostro JD, Giresi PG, Zaba LC et al (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10:1213–1218

    Article  CAS  Google Scholar 

  5. Chang CC, Chow CC, Tellier LC et al (2015) Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaSci 4:7

    Article  Google Scholar 

  6. Ching T, Huang S, Garmire LX (2014) Power analysis and sample size estimation for RNA-Seq differential expression. Rna 20:1684–1696

    Article  CAS  Google Scholar 

  7. Chmielecki J, Meyerson M (2014) DNA sequencing of cancer: what have we learned? Annu Rev Med 65:63–79

    Article  CAS  Google Scholar 

  8. Da Veiga Leprevost F, Gruning BA, Alves Aflitos S et al (2017) BioContainers: an open-source and community-driven framework for software standardization. Bioinformatics 33:2580–2582

    Article  Google Scholar 

  9. Darst RP, Pardo CE, Ai L et al (2010) Bisulfite sequencing of DNA. Curr Protoc Mol Biol Chapter 7:Unit 7.9.1–17

    Google Scholar 

  10. De Souza YG, Greenspan JS (2013) Biobanking past, present and future: responsibilities and benefits. AIDS 27:303–312

    Article  Google Scholar 

  11. Drakulovski P, Locatelli S, Butel C et al (2013) Use of RNAlater as a preservation method for parasitic coprology studies in wild-living chimpanzees. Exp Parasitol 135:257–261

    Article  CAS  Google Scholar 

  12. Fedeli P, Scendoni R, Cingolani M et al (2022) Informed consent and protection of personal data in genetic research on COVID-19. Healthcare. https://doi.org/10.3390/healthcare10020349

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gistera A, Hansson GK (2017) The immunology of atherosclerosis. Nat Rev Nephrol 13:368–380

    Article  Google Scholar 

  14. Hansen MC, Haferlach T, Nyvold CG (2020) A decade with whole exome sequencing in haematology. Br J Haematol 188:367–382

    Article  Google Scholar 

  15. Jinnouchi H, Sato Y, Sakamoto A et al (2020) Calcium deposition within coronary atherosclerotic lesion: Implications for plaque stability. Atherosclerosis 306:85–95

    Article  CAS  Google Scholar 

  16. Koster J, Rahmann S (2018) Snakemake—a scalable bioinformatics workflow engine. Bioinformatics 34:3600

    Article  Google Scholar 

  17. Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  Google Scholar 

  18. Langmead B, Wilks C, Antonescu V et al (2019) Scaling read aligners to hundreds of threads on general-purpose processors. Bioinformatics 35:421–432

    Article  CAS  Google Scholar 

  19. Leinonen R, Sugawara H, Shumway M et al (2011) The sequence read archive. Nucleic Acids Res 39:D19–21

    Article  CAS  Google Scholar 

  20. Li Y, Lemaire SA, Shen YH (2021) Molecular and cellular dynamics of aortic aneurysms revealed by single-cell transcriptomics. Arterioscler Thromb Vasc Biol 41:2671–2680

    Article  CAS  Google Scholar 

  21. Lindeman JH, Matsumura JS (2019) Pharmacologic management of aneurysms. Circ Res 124:631–646

    Article  CAS  Google Scholar 

  22. Lindquist Liljeqvist M, Hultgren R, Bergman O et al (2020) Tunica-specific transcriptome of abdominal aortic aneurysm and the effect of Intraluminal thrombus, smoking, and diameter growth rate. Arterioscler Thromb Vasc Biol 40:2700–2713

    Article  CAS  Google Scholar 

  23. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  Google Scholar 

  24. Mechtouff L, Rascle L, Crespy V et al (2021) A narrative review of the pathophysiology of ischemic stroke in carotid plaques: a distinction versus a compromise between hemodynamic and embolic mechanism. Ann Transl Med 9:1208

    Article  Google Scholar 

  25. Pelisek J, Hegenloh R, Bauer S et al (2019) Biobanking: objectives, requirements, and future challenges-experiences from the munich vascular biobank. J Clin Med. https://doi.org/10.3390/jcm8020251

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pinard A, Jones GT, Milewicz DM (2019) Genetics of thoracic and abdominal aortic diseases. Circ Res 124:588–606

    Article  CAS  Google Scholar 

  27. Sakalihasan N, Michel JB, Katsargyris A et al (2018) Abdominal aortic aneurysms. Nat Rev Dis Primers 4:34

    Article  Google Scholar 

  28. Samani NJ, Erdmann J, Hall AS et al (2007) Genomewide association analysis of coronary artery disease. N Engl J Med 357:443–453

    Article  CAS  Google Scholar 

  29. Satija R, Farrell JA, Gennert D et al (2015) Spatial reconstruction of single-cell gene expression data. Nat Biotechnol 33:495–502

    Article  CAS  Google Scholar 

  30. Schurch NJ, Schofield P, Gierliński M et al (2016) How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? Rna 22:839–851

    Article  CAS  Google Scholar 

  31. Schwarze K, Buchanan J, Taylor JC et al (2018) Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature. Genet Med 20:1122–1130

    Article  Google Scholar 

  32. Stark R, Grzelak M, Hadfield J (2019) RNA sequencing: the teenage years. Nat Rev Genet 20:631–656

    Article  CAS  Google Scholar 

  33. Tourlousse DM, Narita K, Miura T et al (2021) Validation and standardization of DNA extraction and library construction methods for metagenomics-based human fecal microbiome measurements. Microbiome 9:95

    Article  CAS  Google Scholar 

  34. Truax AD, Greer SF (2012) ChIP and Re-ChIP assays: investigating interactions between regulatory proteins, histone modifications, and the DNA sequences to which they bind. Methods Mol Biol 809:175–188

    Article  CAS  Google Scholar 

  35. Tryka KA, Hao L, Sturcke A et al (2014) NCBI’s database of genotypes and phenotypes: dbgaP. Nucleic Acids Res 42:D975–979

    Article  CAS  Google Scholar 

  36. Verma M, Kulshrestha S, Puri A (2017) Genome sequencing. Methods Mol Biol 1525:3–33

    Article  CAS  Google Scholar 

  37. Xiang Y, Tanaka Y, Patterson B et al (2017) Fusion of regionally specified hPSC-derived organoids models human brain development and Interneuron migration. Cell Stem Cell 21:383–398.e387

    Article  CAS  Google Scholar 

  38. Yap C, Mieremet A, De Vries CJM et al (2021) Six shades of vascular smooth muscle cells illuminated by KLF4 (Kruppel-like factor 4). Arterioscler Thromb Vasc Biol 41:2693–2707

    Article  CAS  Google Scholar 

  39. Zhao G, Lu H, Chang Z et al (2021) Single-cell RNA sequencing reveals the cellular heterogeneity of aneurysmal infrarenal abdominal aorta. Cardiovasc Res 117:1402–1416

    Article  CAS  Google Scholar 

  40. Ziegenhain C, Vieth B, Parekh S et al (2017) Comparative analysis of single-cell RNA sequencing methods. Mol Cell 65:631–643.e634

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Pauli.

Ethics declarations

Interessenkonflikt

J. Pauli, A. Hofmann, N. Sachs, S. Wolk, V. Paloschi, L. Maegdefessel, C. Reeps, C.J. Scholz, P. Erhart und A. Busch geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pauli, J., Hofmann, A., Sachs, N. et al. Moderne Sequenzierungsmethoden: Neue Möglichkeiten für die Gefäßmedizin – auch bei kleiner Probenzahl?. Gefässchirurgie 27, 261–267 (2022). https://doi.org/10.1007/s00772-022-00908-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00772-022-00908-y

Schlüsselwörter

Keywords

Navigation