Skip to main content

Advertisement

Log in

Die Rolle der HMGA-Proteine („high mobility group AT-hook“) bei Proliferation und Differenzierung mesenchymaler Zellen und Gewebe

The role of high mobility group AT-hook (HMGA) proteins in the proliferation and differentiation of mesenchymal cells and tissues

  • Leitthema
  • Published:
Gefässchirurgie Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Zusammenfassung

Die HMGA-Proteine („high mobility group AT-hook“) sind kleine basische Proteine, die mit ihren drei als AT-Hooks bezeichneten Domänen an AT-reiche Abschnitte von DNA binden können. Als sog. architektonische Transkriptionsfaktoren verändern sie damit die Expression entsprechender Bereiche des Genoms. Die HMGA-Proteine werden von den beiden Genen HMGA1 und HMGA2 kodiert, von denen insbesondere das HMGA2 nahezu ausschließlich während der Embryonal- und Fetalentwicklung sowie in aktivierten adulten Stammzellen exprimiert wird. Knock-out- (Mausmodel) sowie Haploinsuffizienz (human, Maus) des HMGA2 führen zu reduzierter Körperhöhe und Gewicht, während eine somatische Reexpression beider Gene durch chromosomale Rearrangierungen ursächlich im Zusammenhang mit der Entstehung gutartiger Tumoren steht (u. a. Uterusleiomyome, Korpuspolypen, Lipome, chondroide Lungenhamartome). Eine Aktivierung durch Deregulation wird als ursächlich für pathophysiologische Proliferation glattmuskulärer Zellen der Gefäßwände angesehen.

Abstract

High mobility group AT-hook (HMGA) proteins are small basic proteins which can bind to stretches of AT-rich DNA by one of their three domains called AT-hooks. As architectural transcription factors they alter the expression of the respective parts of the genome. HMGA proteins are encoded by the genes HMGA1 and HMGA2. Of these in particular HMGA2 becomes expressed almost exclusively during the embryonal and fetal period and in activated adult stem cells. Constitutional knock-out in mice and haploinsufficiency in humans and mice leads to reduced height and weight. In contrast, re-expression due to somatic chromosomal rearrangements acts as a driver in common benign tumors (e.g., uterine leiomyomas, polyps of the uterine corpus, lipomas, and pulmonary chondroid hamartomas). Transcriptional reactivation seems to be causally involved in pathophysiological proliferation of smooth muscle cells of blood vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Alonso-Martin S, Rochat A, Mademtzoglou D et al (2016) Gene expression profiling of muscle stem cells identifies novel regulators of postnatal myogenesis. Front Cell Dev Biol 4:58. https://doi.org/10.3389/fcell.2016.00058

    Article  PubMed  PubMed Central  Google Scholar 

  2. Anand A, Chada K (2000) In vivo modulation of Hmgic reduces obesity. Nat Genet 24:377–380. https://doi.org/10.1038/74207

    Article  CAS  PubMed  Google Scholar 

  3. Arlotta P, Tai AKF, Manfioletti G et al (2000) Transgenic mice expressing a truncated form of the high mobility group I‑C protein develop adiposity and an abnormally high prevalence of lipomas. J Biol Chem 275:14394–14400. https://doi.org/10.1074/jbc.M000564200

    Article  CAS  PubMed  Google Scholar 

  4. Asher HR, Schoenberg Fejzo M, Tkachenko A et al (1995) Disruption of the architectural factor HMGI-C: DNA-binding AT hook motifs fused in lipomas to distinct transcriptional regulatory domains. Cell 82:57–65. https://doi.org/10.1016/0092-8674(95)90052-7

    Article  Google Scholar 

  5. Belge G, Meyer A, Klemke M et al (2008) Upregulation of HMGA2 in thyroid carcinomas: a novel molecular marker to distinguish between benign and malignant follicular neoplasias. Genes Chromosom Cancer 47:56–63. https://doi.org/10.1002/gcc.20505

    Article  CAS  PubMed  Google Scholar 

  6. Brocher J, Vogel B, Hock R (2010) HMGA1 down-regulation is crucial for chromatin composition and a gene expression profile permitting myogenic differentiation. BMC Cell Biol 11:64. https://doi.org/10.1186/1471-2121-11-64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carneiro M, Hu D, Archer J et al (2017) Dwarfism and altered craniofacial development in rabbits is caused by a 12.1 kb deletion at the HMGA2 locus. Nat Genet 205:955–965. https://doi.org/10.1534/genetics.116.196667

    Article  CAS  Google Scholar 

  8. Caron L, Bost F, Prot M et al (2005) A new role for the oncogenic high-mobility group A2 transcription factor in myogenesis of embryonic stem cells. Oncogene 24:6281–6291. https://doi.org/10.1038/sj.onc.1208781

    Article  CAS  PubMed  Google Scholar 

  9. Carty CL, Johnson NA, Hutter CM et al (2012) Genome-wide association study of body height in African Americans: The Women’s Health Initiative SNP Health Association Resource (SHARe). Hum Mol Genet 21:711–720. https://doi.org/10.1093/hmg/ddr489

    Article  CAS  PubMed  Google Scholar 

  10. Cavazzana-Calvo M, Payen E, Negre O et al (2010) Transfusion independence and HMGA2 activation after gene therapy of human β‑thalassaemia. Nature 467:318–322. https://doi.org/10.1038/nature09328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chau KY, Patel UA, Lee KL et al (1995) The gene for the human architectural transcription factor HMGI‑C consists of five exons each coding for a distinct functional element. Nucleic Acids Res 23:4262–4266

    Article  CAS  Google Scholar 

  12. Chiappetta G, Avantaggiato V, Visconti R et al (1996) High level expression of the HMGI (Y) gene during embryonic development. Oncogene 13:2439–2446

    CAS  PubMed  Google Scholar 

  13. Chin MT, Pellacani A, Hsieh CM et al (1999) Induction of high mobility group I architectural transcription factors in proliferating vascular smooth muscle in vivo and in vitro. J Mol Cell Cardiol 31:2199–2205. https://doi.org/10.1006/jmcc.1999.1054

    Article  CAS  PubMed  Google Scholar 

  14. Cin PD, Timmerman D, Van Den Berghe I et al (1998) Genomic changes in endometrial polyps associated with tamoxifen show no evidence for its action as an external carcinogen. Cancer Res 58:2278–2281

    Google Scholar 

  15. Cleynen I, Van de Ven WJM (2008) The HMGA proteins: a myriad of functions (review). Int J Oncol 32:289–305

    CAS  PubMed  Google Scholar 

  16. Dadone B, Refae S, Lemarié-Delaunay C et al (2015) Molecular cytogenetics of pediatric adipocytic tumors. Cancer Genet 208:469–481. https://doi.org/10.1016/j.cancergen.2015.06.005

    Article  CAS  PubMed  Google Scholar 

  17. Fatemifar G, Hoggart CJ, Paternoster L et al (2013) Genome-wide association study of primary tooth eruption identifies pleiotropic loci associated with height and craniofacial distances. Hum Mol Genet 22:3807–3817. https://doi.org/10.1093/hmg/ddt231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Foster LC, Wiesel P, Huggins GS et al (2000) Role of activating protein‑1 and high mobility group-I(Y) protein in the induction of CD44 gene expression by interleukin-1β in vascular smooth muscle cells. FASEB J 14:368–378. https://doi.org/10.1096/fasebj.14.2.368

    Article  CAS  PubMed  Google Scholar 

  19. Friedmann M, Holth LT, Zoghbi HY, Reeves R (1993) Organization, inducible-expression and chromosome localization of the human HMG-I(Y) nonhistone protein gene. Nucleic Acids Res 21:4259–4267. https://doi.org/10.1093/nar/21.18.4259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gattas GJ, Quade BJ, Nowak RA, Morton CC (1999) HMGIC expression in human adult and fetal tissues and in uterine leiomyomata. Genes Chromosomes Cancer 25:316–322

    Article  CAS  Google Scholar 

  21. Geurts JM, Schoenmakers EF, Röijer E et al (1997) Expression of reciprocal hybrid transcripts of HMGIC and FHIT in a pleomorphic adenoma of the parotid gland. Cancer Res 57:13–17

    CAS  PubMed  Google Scholar 

  22. Giancotti V, Bandiera A, Ciani L et al (1993) High-mobility-group (HMG) proteins and histone H1 subtypes expression in normal and tumor tissues of mouse. Eur J Biochem 213:825–832. https://doi.org/10.1111/j.1432-1033.1993.tb17825.x

    Article  CAS  PubMed  Google Scholar 

  23. Goodwin G (1998) The high mobility group protein, HMGI‑C. Int J Biochem Cell Biol 30:761–766. https://doi.org/10.1016/S1357-2725(98)00016-8

    Article  CAS  PubMed  Google Scholar 

  24. Gross KL, Neskey DM, Manchanda N et al (2003) HMGA2 expression in uterine leiomyomata and myometrium: quantitative analysis and tissue culture studies. Genes Chromosom Cancer 38:68–79. https://doi.org/10.1002/gcc.10240

    Article  CAS  PubMed  Google Scholar 

  25. Heldt F, Wallaschek H, Ripperger T et al (2018) 12q14 microdeletion syndrome: a family with short stature and Silver-Russell syndrome (SRS)-like phenotype and review of the literature. Eur J Med Genet 61:421–427. https://doi.org/10.1016/j.ejmg.2018.02.010

    Article  PubMed  Google Scholar 

  26. Hendriks AEJ, Brown MR, Boot AM et al (2011) Genetic variation in candidate genes like the HMGA2 gene in the extremely tall. Horm Res Paediatr 76:307–313. https://doi.org/10.1159/000330764

    Article  CAS  PubMed  Google Scholar 

  27. Hess JL (1998) Chromosomal translocations in benign tumors: the HMGI proteins. Am J Clin Pathol 109:251–261

    Article  CAS  Google Scholar 

  28. Hirning-Folz U, Wilda M, Rippe V et al (1998) The expression pattern of the Hmgic gene during development. Genes Chromosomes Cancer 23:350–357

    Article  CAS  Google Scholar 

  29. Horikoshi M, Yaghootkar H, Mook-Kanamori DO et al (2013) New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism. Nat Genet 45:76–82. https://doi.org/10.1038/ng.2477

    Article  CAS  PubMed  Google Scholar 

  30. Inoue N, Izui-Sarumaru T, Murakami Y et al (2006) Molecular basis of clonal expansion of hematopoiesis in 2 patients with paroxysmal nocturnal hemoglobinuria (PNH). Blood 108:4232–4236. https://doi.org/10.1182/blood-2006-05-025148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Johnson KR, Disney JE, Wyatt CR, Reeves R (1990) Expression of mRNAs encoding mammalian chromosomal proteins HMG‑I and HMG‑Y during cellular proliferation. Exp Cell Res 187:69–76. https://doi.org/10.1016/0014-4827(90)90118-T

    Article  CAS  PubMed  Google Scholar 

  32. Kazmierczak B, Bol S, Wanschura S et al (1996) PAC clone containing the HMGI(Y) gene spans the breakpoint of a 6p21 translocation in a uterine leiomyoma cell line. Genes Chromosom Cancer 17:191–193. https://doi.org/10.1002/(SICI)1098-2264(199611)17:3〈191::AID-GCC8〉3.0.CO;2-#

    Article  CAS  Google Scholar 

  33. Kazmierczak B, Dal Cin P, Wanschura S et al (1998) HMGIY is the target of 6p21.3 rearrangements in various benign mesenchymal tumors. Genes Chromosom Cancer 23:279–285. https://doi.org/10.1002/(SICI)1098-2264(199812)23:4〈279::AID-GCC1〉3.0.CO;2‑1

    Article  CAS  Google Scholar 

  34. Kazmierczak B, Hennig Y, Wanschura S et al (1995) Description of a novel fusion transcript between HMGI‑C, a gene encoding for a member of the high mobility group proteins, and the mitochondrial aldehyde dehydrogenase gene. Cancer Res 55:6038–6039

    CAS  PubMed  Google Scholar 

  35. Kazmierczak B, Rosigkeit J, Wanschura S et al (1996) HMGI‑C rearrangements as the molecular basis for the majority of pulmonary chondroid hamartomas: a survey of 30 tumors. Oncogene 12:515–521

    CAS  PubMed  Google Scholar 

  36. Kazmierczak B, Wanschura S, Rommel B et al (1996) Ten pulmonary chondroid hamartomas with chromosome 6p21 breakpoints within the HMG-I(Y) gene or its immediate surroundings. J Natl Cancer Inst 88:1234–1236

    Article  CAS  Google Scholar 

  37. Kim JJ, Shin JH, Yu KR et al (2017) Direct conversion of human umbilical cord blood into induced neural stem cells with SOX2 and HMGA2. Int J Stem Cells 10:227–234. https://doi.org/10.15283/ijsc17025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Klemke M, Meyer A, Nezhad MH et al (2009) Overexpression of HMGA2 in uterine leiomyomas points to its general role for the pathogenesis of the disease. Genes Chromosom Cancer 48:171–178. https://doi.org/10.1002/gcc.20627

    Article  CAS  PubMed  Google Scholar 

  39. Leszinski GS, Warncke K, Hoefele J, Wagner M (2018) A case report and review of the literature indicate that HMGA2 should be added as a disease gene for Silver-Russell syndrome. Gene 663:110–114. https://doi.org/10.1016/j.gene.2018.04.027

    Article  CAS  PubMed  Google Scholar 

  40. Li J, Xue H, Li T et al (2019) Exosomes derived from mesenchymal stem cells attenuate the progression of atherosclerosis in ApoE−/- mice via miR-let7 mediated infiltration and polarization of M2 macrophage. Biochem Biophys Res Commun 510:565–572. https://doi.org/10.1016/j.bbrc.2019.02.005

    Article  CAS  PubMed  Google Scholar 

  41. Li Z, Gilbert JA, Zhang Y et al (2012) An HMGA2-IGF2BP2 axis regulates myoblast proliferation and myogenesis. Dev Cell 23:1176–1188. https://doi.org/10.1016/j.devcel.2012.10.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ligon AH, Moore SDP, Parisi MA et al (2005) Constitutional rearrangement of the architectural factor HMGA2: a novel human phenotype including overgrowth and lipomas. Am J Hum Genet 76:340–348. https://doi.org/10.1086/427565

    Article  CAS  PubMed  Google Scholar 

  43. Makvandi-Nejad S, Hoffman GE, Allen JJ et al (2012) Four loci explain 83% of size variation in the horse. Plos One 7:e39929. https://doi.org/10.1371/journal.pone.0039929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mari F, Hermanns P, Giovannucci-Uzielli ML et al (2009) Refinement of the 12q14 microdeletion syndrome: primordial dwarfism and developmental delay with or without osteopoikilosis. Eur J Hum Genet 17:1141–1147. https://doi.org/10.1038/ejhg.2009.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Menten B, Buysse K, Zahir F et al (2007) Osteopoikilosis, short stature and mental retardation as key features of a new microdeletion syndrome on 12q14. J Med Genet 44:264–268. https://doi.org/10.1136/jmg.2006.047860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Meyer B, Loeschke S, Schultze A et al (2007) HMGA2 overexpression in non-small cell lung cancer. Mol Carcinog 46:503–511. https://doi.org/10.1002/mc.20235

    Article  CAS  PubMed  Google Scholar 

  47. Miyazawa J, Mitoro A, Kawashiri S et al (2004) Expression of mesenchyme-specific gene HMGA2 in squamous cell carcinomas of the oral cavity. Cancer Res 64:2024–2029. https://doi.org/10.1158/0008-5472.CAN-03-1855

    Article  CAS  PubMed  Google Scholar 

  48. Monzen K, Ito Y, Naito AT et al (2008) A crucial role of a high mobility group protein HMGA2 in cardiogenesis. Nat Cell Biol 10:567–574. https://doi.org/10.1038/ncb1719

    Article  CAS  PubMed  Google Scholar 

  49. Murua Escobar H, Soller JT, Richter A et al (2005) “best friends” sharing the HMGAI gene: comparison of the human and canine HMGAI to orthologous other species. J Hered 96:777–781. https://doi.org/10.1093/jhered/esi083

    Article  CAS  PubMed  Google Scholar 

  50. Norton EM, Avila F, Schultz NE et al (2019) Evaluation of an HMGA2 variant for pleiotropic effects on height and metabolic traits in ponies. J Vet Intern Med 33:942–952. https://doi.org/10.1111/jvim.15403

    Article  PubMed  PubMed Central  Google Scholar 

  51. Odero MD, Grand FH, Iqbal S et al (2005) Disruption and aberrant expression of HMGA2 as a consequence of diverse chromosomal translocations in myeloid malignancies. Leukemia 19:245–252. https://doi.org/10.1038/sj.leu.2403605

    Article  CAS  PubMed  Google Scholar 

  52. Parisi S, Piscitelli S, Passaro F, Russo T (2020) HMGA proteins in stemness and differentiation of embryonic and adult stem cells. Int J Mol Sci. https://doi.org/10.3390/ijms21010362

    Article  PubMed  PubMed Central  Google Scholar 

  53. Pellacani A, Chin MT, Wiesel P et al (1999) Induction of high mobility group-I(Y) protein by endotoxin and interleukin-1β in vascular smooth muscle cells: role in activation of inducible nitric synthase. J Biol Chem 274:1525–1532. https://doi.org/10.1074/jbc.274.3.1525

    Article  CAS  PubMed  Google Scholar 

  54. Pellacani A, Wiesel P, Razavi S et al (2001) Down-regulation of high mobility group-I(Y) protein contributes to the inhibition of nitric-oxide synthase 2 by transforming growth factor-β1. J Biol Chem 276:1653–1659. https://doi.org/10.1074/jbc.M008170200

    Article  CAS  PubMed  Google Scholar 

  55. Perrella MA, Pellacani A, Wiesel P et al (1999) High mobility group-I(Y) protein facilitates nuclear factor-κB binding and transactivation of the inducible nitric-oxide synthase promoter/enhancer. J Biol Chem 274:9045–9052. https://doi.org/10.1074/jbc.274.13.9045

    Article  CAS  PubMed  Google Scholar 

  56. Petit MMR, Swarts S, Bridge JA, Van De Ven WJM (1998) Expression of reciprocal fusion transcripts of the HMGIC and LPP genes in parosteal lipoma. Cancer Genet Cytogenet 106:18–23. https://doi.org/10.1016/S0165-4608(98)00038-7

    Article  CAS  PubMed  Google Scholar 

  57. Poon LW (1991) Identifying gender and ethnicity roles in health and adaptation of octogenarians and centenarians. Exp Aging Res 17:89

    CAS  PubMed  Google Scholar 

  58. Qiu H, Zhong J, Luo L et al (2017) Regulatory axis of miR-195/497 and HMGA1–Id3 governs muscle cell proliferation and differentiation. Int J Biol Sci 13:157–166. https://doi.org/10.7150/ijbs.17440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rogalla P, Drechsler K, Frey G et al (1996) HMGI‑C expression patterns in human tissues. Implications for the genesis of frequent mesenchymal tumors. Am J Pathol 149:775–779

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Rogalla P, Drechsler K, Kazmierczak B et al (1997) Expression of HMGI‑C, a member of the high mobility group protein family, in a subset of breast cancers: relationship to histologic grade. Mol Carcinog 19:153–156. https://doi.org/10.1002/(SICI)1098-2744(199707)19:3〈153::AID-MC2〉3.0.CO;2‑F

    Article  CAS  Google Scholar 

  61. Rogalla P, Drechsler K, Schröder-Babo W et al (1998) HMGIC expression patterns in non-small lung cancer and surrounding tissue. Anticancer Res 18:3327–3330

    CAS  PubMed  Google Scholar 

  62. Rogalla P, Lemke I, Kazmierczak B, Bullerdiek J (2000) An identical HMGIC-LPP fusion transcript is consistently expressed in pulmonary chondroid hamartomas with t(3;12)(q27-28;q14-15). Genes Chromosom Cancer 29:363–366. https://doi.org/10.1002/1098-2264(2000)9999:9999〈1::AID-GCC1043〉3.0.CO;2‑N

    Article  CAS  Google Scholar 

  63. Rommel B, Rogalla P, Jox A et al (1997) HMGI‑C, a member of the high mobility group family of proteins, is expressed in hematopoietic stem cells and in leukemic cells. Leuk Lymphoma 26:603–607. https://doi.org/10.3109/10428199709050896

    Article  CAS  PubMed  Google Scholar 

  64. Ruyter-Spira CP, De Groof AJC, Van Der Poel JJ et al (1998) The HMGI‑C gene is a likely candidate for the autosomal dwarf locus in the chicken. J Hered 89:295–300. https://doi.org/10.1093/jhered/89.4.295

    Article  CAS  PubMed  Google Scholar 

  65. Schlueter C, Hauke S, Loeschke S et al (2005) HMGA1 proteins in human atherosclerotic plaques. Pathol Res Pract 201:101–107. https://doi.org/10.1016/j.prp.2004.11.010

    Article  CAS  PubMed  Google Scholar 

  66. Schoenmakers EF, Wanschura S, Mols R et al (1995) Recurrent rearrangements in the high mobility group protein gene, HMGI‑C, in benign mesenchymal tumours. Nat Genet 10:436–444. https://doi.org/10.1038/ng0895-436

    Article  CAS  PubMed  Google Scholar 

  67. Shah SN, Cope L, Poh W et al (2013) HMGA1: a master regulator of tumor progression in triple-negative breast cancer cells. Plos One 8:e63419. https://doi.org/10.1371/journal.pone.0063419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shah SN, Kerr C, Cope L et al (2012) HMGA1 reprograms somatic cells into Pluripotent stem cells by inducing stem cell Transcriptional networks. Plos One 7:e48533. https://doi.org/10.1371/journal.pone.0048533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Song C, Gu X, Feng C et al (2011) Evaluation of SNPs in the chicken HMGA2 gene as markers for body weight gain. Anim Genet 42:333–336. https://doi.org/10.1111/j.1365-2052.2010.02141.x

    Article  CAS  PubMed  Google Scholar 

  70. Su Q, Lv X, Sun Y et al (2018) Role of high mobility group A1/nuclear factor-kappa B signaling in coronary microembolization-induced myocardial injury. Biomed Pharmacother 105:1164–1171. https://doi.org/10.1016/j.biopha.2018.06.098

    Article  CAS  PubMed  Google Scholar 

  71. Sumter TF, Xian L, Huso T et al (2016) The high mobility group A1 (HMGA1) transcriptome in cancer and development. Curr Mol Med 16:353–393. https://doi.org/10.2174/1566524016666160316152147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tallini G, Vanni R, Manfioletti G et al (2000) HMGI‑C and HMGI(Y) immunoreactivity correlates with cytogenetic abnormalities in lipomas, pulmonary chondroid hamartomas, endometrial polyps, and uterine leiomyomas and is compatible with rearrangement of the HMGI‑C and HMGI(Y) genes. Lab Invest 80:359–369

    Article  CAS  Google Scholar 

  73. Thies HW, Nolte I, Wenk H et al (2014) Permanent activation of HMGA2 in lipomas mimics its temporal physiological activation linked to the gain of adipose tissue. Obesity 22:141–150. https://doi.org/10.1002/oby.20137

    Article  CAS  PubMed  Google Scholar 

  74. Thuault S, Valcourt U, Petersen M et al (2006) Transforming growth factor‑β employs HMGA2 to elicit epithelial-mesenchymal transition. J Cell Biol 174:175–183. https://doi.org/10.1083/jcb.200512110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Titov S, Demenkov PS, Lukyanov SA et al (2020) Preoperative detection of malignancy in fine-needle aspiration cytology (FNAC) smears with indeterminate cytology (Bethesda III, IV) by a combined molecular classifier. J Clin Pathol. https://doi.org/10.1136/jclinpath-2020-206445

    Article  PubMed  Google Scholar 

  76. Watanabe S, Ueda Y, Akaboshi SI et al (2009) HMGA2 maintains oncogenic RAS-induced epithelial-mesenchymal transition in human pancreatic cancer cells. Am J Pathol 174:854–868. https://doi.org/10.2353/ajpath.2009.080523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Winter N, Nimzyk R, Bösche C et al (2011) Chromatin immunoprecipitation to analyze DNA binding sites of HMGA2. Plos One 6:e18837. https://doi.org/10.1371/journal.pone.0018837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zaidi MR, Okada Y, Chada KK (2006) Misexpression of full-length HMGA2 induces benign mesenchymal tumors in mice. Cancer Res 66:7453–7459. https://doi.org/10.1158/0008-5472.CAN-06-0931

    Article  CAS  PubMed  Google Scholar 

  79. Zhang S, Mo Q, Wang X (2019) Oncological role of HMGA2 (review). Int J Oncol 55:775–778. https://doi.org/10.3892/ijo.2019.4856

    Article  CAS  PubMed  Google Scholar 

  80. Zhou X, Benson KF, Ashar HR, Chada K (1995) Mutation responsible for the mouse pygmy phenotype in the developmentally regulated factor HMGI‑C. Nature 376:771–774. https://doi.org/10.1038/376771a0

    Article  CAS  PubMed  Google Scholar 

  81. Zhou X, Chada K (1998) HMGI family proteins: architectural transcription factors in mammalian development and cancer. Keio J Med 47:73–77. https://doi.org/10.2302/kjm.47.73

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bullerdiek.

Ethics declarations

Interessenkonflikt

J. Bullerdiek, C. Holzmann und B. Rommel geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bullerdiek, J., Holzmann, C. & Rommel, B. Die Rolle der HMGA-Proteine („high mobility group AT-hook“) bei Proliferation und Differenzierung mesenchymaler Zellen und Gewebe. Gefässchirurgie 25, 332–338 (2020). https://doi.org/10.1007/s00772-020-00667-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00772-020-00667-8

Schlüsselwörter

Keywords

Navigation