Skip to main content

Advertisement

Log in

Die Rolle der Ribonuklease 1 und des Ribonuklease-Inhibitors 1 in der thorakoabdominellen Aortenchirurgie

Studiendesign einer Pilotstudie

Role of ribonuclease 1 and ribonuclease inhibitor 1 in thoracoabdominal aortic surgery

Study design of a pilot study

  • Leitthema
  • Published:
Gefässchirurgie Aims and scope Submit manuscript

Zusammenfassung

Eine gefürchtete Komplikation in der offenen und endovaskulären thorakoabdominellen Aortenchirurgie stellt die systemische Inflammationsreaktion und das damit assoziierte Multiorganversagen dar. Da trotz intensiver Forschung keine kausalen Therapeutika zur Eindämmung dieser postoperativen Komplikation etabliert werden konnten, ist die Identifizierung und Evaluation neuer therapeutischer Zielstrukturen für die betroffenen Patienten von entscheidender Bedeutung. Sowohl der hohe Gewebeschaden bei der offenen Behandlungsmethode als auch das Postimplantationssyndrom (PIS) nach endovaskulärer TAAA-Behandlung resultieren in einer Freisetzung von endogenen „damage-associated molecular patterns“ (DAMPs), wie zum Beispiel extrazelluläre Ribonukleinsäuren (RNA), die die systemische Inflammationsreaktion induzieren und aufrechterhalten. Ribonukleasen (RNasen) gehören der Gruppe endogener antimikrobieller Peptide an. Als Bestandteil des angeborenen Immunsystems modulieren RNasen die Immunreaktion auf körperfremde Pathogene sowie endogene DAMPs. Der Ribonuklease-Inhibitor 1 (RNH1) stellt den Antagonisten der RNase 1 dar. Dieser wird von verschiedenen Geweben exprimiert und inhibiert die RNase 1. Die Rolle der RNase 1 sowie des RNH1 als neuer, additiver Therapieansatz in dem inflammationsassoziierten Multiorganversagen nach chirurgischer thorakoabdominellen Aortenaneurysma- (TAAA-)Sanierung ist bisher jedoch ungeklärt. Ziel der geplanten Pilotstudie ist es daher, die Rolle der RNase 1 sowie des RNH1 als eine neue mögliche therapeutische Zielstruktur und/oder Biomarker in der offenen und endovaskulären thorakoabdominellen Aortenchirurgie und der damit assoziierten Inflammationsreaktion zu analysieren.

Abstract

A feared complication in open and endovascular thoracoabdominal aortic surgery is the systemic inflammatory response and associated multiorgan failure. As no causal therapeutic agents for suppression of this postoperative complication could be established despite intensive research, the identification and evaluation of new therapeutic target structures are crucial for the patients. The significant tissue damage during open surgery and the post-implantation syndrome (PIS) after endovascular thoracoabdominal aortic aneurysm (TAAA) repair result in the release of endogenous damage-associated molecular patterns (DAMP), such as extracellular ribonucleic acid (RNA), which induce and maintain the systemic inflammatory response. Ribonucleases (RNases) belong to the group of endogenous antimicrobial peptides. As a component of the innate immune system, RNases modulate the immune response to foreign pathogens and endogenous DAMPs. Ribonuclease inhibitor 1 (RNH1) represents the antagonist of RNase 1; however, the role of RNase 1 and RNH1 as a new additive treatment approach in systemic inflammation-associated multiorgan failure after surgical TAAA repair is still unclear. Therefore, the aim of the proposed pilot study is to analyze the role of RNase 1 and RNH1 as a new potential treatment target structure and/or biomarker in open and endovascular thoracoabdominal aortic repair and the associated inflammatory response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Abtin A, Eckhart L, Mildner M et al (2009) Degradation by stratum corneum proteases prevents endogenous RNase inhibitor from blocking antimicrobial activities of RNase 5 and RNase 7. J Invest Dermatol 129:2193–2201

    Article  CAS  Google Scholar 

  2. Arnaoutoglou E, Papas N, Milionis H et al (2010) Post-implantation syndrome after endovascular repair of aortic aneurysms: need for postdischarge surveillance. Interact CardioVasc Thorac Surg 11:449–454

    Article  Google Scholar 

  3. Bannazadeh M, Beckerman WE, Korayem AH et al (2020) Two-year evaluation of fenestrated and parallel branch endografts for the treatment of juxtarenal, suprarenal, and thoracoabdominal aneurysms at a single institution. J Vasc Surg 71:15–22

    Article  Google Scholar 

  4. Benner SA (1988) Extracellular ‘communicator RNA. FEBS Lett 233:225–228

    Article  CAS  Google Scholar 

  5. Cabrera-Fuentes HA, Ruiz-Meana M, Simsekyilmaz S et al (2014) RNase1 prevents the damaging interplay between extracellular RNA and tumour necrosis factor-alpha in cardiac ischaemia/reperfusion injury. Thromb Haemost 112:1110–1119

    Article  CAS  Google Scholar 

  6. Cambria RA, Gloviczki P, Stanson AW et al (1995) Outcome and expansion rate of 57 thoracoabdominal aortic aneurysms managed nonoperatively. Am J Surg 170:213–217

    Article  CAS  Google Scholar 

  7. Chen C, Feng Y, Zou L et al (2014) Role of extracellular RNA and TLR3-Trif signaling in myocardial ischemia-reperfusion injury. JAHA 3:e683

    PubMed  Google Scholar 

  8. Clouse WD, Hallett JW Jr., Schaff HV et al (1998) Improved prognosis of thoracic aortic aneurysms: a population-based study. JAMA 280:1926–1929

    Article  CAS  Google Scholar 

  9. Crawford ES (1974) Thoraco-abdominal and abdominal aortic aneurysms involving renal, superior mesenteric, celiac arteries. Ann Surg 179:763–772

    Article  CAS  Google Scholar 

  10. Dickson KA, Haigis MC, Raines RT (2005) Ribonuclease inhibitor: structure and function. Prog Nucleic Acid Res Mol Biol 80:349–374

    Article  CAS  Google Scholar 

  11. Engel C, Brunkhorst FM, Bone HG et al (2007) Epidemiology of sepsis in Germany: results from a national prospective multicenter study. Intensive Care Med 33:606–618

    Article  Google Scholar 

  12. Etheredge SN, Yee J, Smith JV et al (1955) Successful resection of a large aneurysm of the upper abdominal aorta and replacement with homograft. Surgery 38:1071–1081

    CAS  PubMed  Google Scholar 

  13. Fabbri M, Paone A, Calore F et al (2012) MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci USA 109:E2110–E2116

    Article  CAS  Google Scholar 

  14. Feng Y, Chen H, Cai J et al (2015) Cardiac RNA induces inflammatory responses in cardiomyocytes and immune cells via Toll-like receptor 7 signaling. J Biol Chem 290:26688–26698

    Article  CAS  Google Scholar 

  15. Greenberg RK, Lu Q, Roselli EE et al (2008) Contemporary analysis of descending thoracic and thoracoabdominal aneurysm repair: a comparison of endovascular and open techniques. Circulation 118:808–817

    Article  Google Scholar 

  16. Kheirelseid EA, Gardiner R, Haider SN et al (2014) Endovascular repair of thoracoabdominal aortic aneurysm (TAAA): early experience. Ir J Med Sci 183:153–160

    Article  CAS  Google Scholar 

  17. Knaus WA, Draper EA, Wagner DP et al (1985) APACHE II: a severity of disease classification system. Crit Care Med 13:818–829

    Article  CAS  Google Scholar 

  18. Koczera P, Martin L, Marx G et al (2016) The Ribonuclease A Superfamily in Humans: Canonical RNases as the Buttress of Innate Immunity. Int J Mol Sci 17(8):1278. https://doi.org/10.3390/ijms17081278

  19. Martin L, De Santis R, Koczera P et al (2015) The Synthetic Antimicrobial Peptide 19‑2.5 Interacts with Heparanase and Heparan Sulfate in Murine and Human Sepsis. PLoS ONE 10:e143583

    Article  Google Scholar 

  20. Martin L, Gombert A, Chen J et al (2017) The beta-d-endoglucuronidase heparanase is a danger molecule that drives systemic inflammation and correlates with clinical course after open and Endovascular Thoracoabdominal aortic aneurysm repair: lessons learnt from mice and men. Front Immunol 8:681

    Article  Google Scholar 

  21. Martin L, Koczera P, Simons N et al (2016) The human host defense Ribonucleases 1, 3 and 7 are elevated in patients with sepsis after major surgery—A pilot study. IJMS 17:294

    Article  Google Scholar 

  22. Mookherjee N, Anderson MA, Haagsman HP et al (2020) Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov. https://doi.org/10.1038/s41573-019-0058-8

    Article  PubMed  Google Scholar 

  23. Moore K (2014) Trauma mortality: understanding mortality distribution to improve outcomes. J Emerg Nurs 40:405–406

    Article  Google Scholar 

  24. Quinones-Baldrich WJ, Panetta TF, Vescera CL et al (1999) Repair of type IV thoracoabdominal aneurysm with a combined endovascular and surgical approach. J Vasc Surg 30:555–560

    Article  CAS  Google Scholar 

  25. Sharma SK, Naidu G (2016) The role of danger-associated molecular patterns (DAMPs) in trauma and infections. J Thorac Dis 8:1406

    Article  Google Scholar 

  26. Singer M, Deutschman CS, Seymour CW et al (2016) The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315:801–810

    Article  CAS  Google Scholar 

  27. Yamada N, Martin LB, Zechendorf E et al (2018) Novel synthetic, host-defense peptide protects against organ injury/dysfunction in a rat model of severe hemorrhagic shock. Ann Surg 268:348–356

    Article  Google Scholar 

  28. Zechendorf E, O’riordan CE, Stiehler L et al (2020) Ribonuclease 1 attenuates septic cardiomyopathy and cardiac apoptosis in a murine model of polymicrobial sepsis. JCI Insight. https://doi.org/10.1172/jci.insight.131571

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang Q, Raoof M, Chen Y et al (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464:104–107

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Martin MHBA.

Ethics declarations

Interessenkonflikt

E. Zechendorf, A. Gombert, D. Kotelis, T.-P. Simon, G. Marx und L. Martin geben an, dass kein Interessenkonflikt besteht.

Alle beschriebenen Untersuchungen am Menschen oder an menschlichem Gewebe wurden mit Zustimmung der internen Ethikkommission der Uniklinik RWTH Aachen (EK004/14), im Einklang mit nationalem Recht sowie gemäß der Deklaration von Helsinki von 1975 (in der aktuellen, überarbeiteten Fassung) durchgeführt. Von allen beteiligten Patienten liegt eine Einverständniserklärung vor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zechendorf, E., Gombert, A., Kotelis, D. et al. Die Rolle der Ribonuklease 1 und des Ribonuklease-Inhibitors 1 in der thorakoabdominellen Aortenchirurgie. Gefässchirurgie 25, 232–235 (2020). https://doi.org/10.1007/s00772-020-00655-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00772-020-00655-y

Schlüsselwörter

Keywords

Navigation