Skip to main content

Advertisement

Log in

Praktische Tipps für den persönlichen Strahlenschutz bei endovaskulären Eingriffen im Hybrid-Operationssaal

Practical tips for personal radiation protection during endovascular interventions in hybrid operating theaters

  • Leitthema
  • Published:
Gefässchirurgie Aims and scope Submit manuscript

Zusammenfassung

Der Einsatz von Röntgenstrahlen im gefäßchirurgischen Operationsraum hat in den letzten 2 Jahrzehnten durch die Zunahme der endovaskulären Eingriffe, aber auch aufgrund deren Komplexität insbesondere bei endovaskulären Aorteneingriffen (EVAR) durch den Einsatz von Fluoroskopie, Angiographie und Cone-Beam-CT zugenommen. Die Entwicklung und Etablierung von Hybrid-Operationssälen haben das endovaskuläre Therapiespektrum an den jeweiligen Standorten zudem stark erweitert. Der persönliche Strahlenschutz im (Hybrid‑)Operationssaal für jedes einzelne Teammitglied inkl. Anästhesie und Pflegepersonal hat deshalb eine relevante und zunehmende Bedeutung erlangt. Theoretische (physikalische und biologische) Grundkenntnisse, vor allem aber praktische Kenntnisse zur Strahlenreduktion, Strahlenexposition und zum Strahlenschutz sind für endovaskulär tätige Gefäßchirugen/-innen unabdingbar. Durch Umsetzung des ALARA-Prinzips, durch konsequentes Tragen von Strahlenschutzkleidung, Anwendung strahlenschützender Maßnahmen und durch ein bewusstes Verhalten im Umgang mit Röntgenstrahlungsquellen unter Einsatz softwarebasierter Applikationen (z. B. „fusion imaging“) sowie dosimetrischer Echtzeitkontrollen der Strahlenexposition kann die individuelle Strahlenexposition signifikant reduziert werden. Neue Low-dose-Technologien müssen zur optimalen Strahlenreduktion mit sog. „good clinical practic“ und „awareness“ verbunden werden. Jeder einzelne Schritt hat einen hohen Einfluss auf die verwendete Strahlendosis. Strahlenreduktion ist neben Reduktion von Kontrastmittelgabe und verbesserten technischen Erfolgsraten ein notwendiges Ziel im endovaskulären Operationssaal. Ausbildung und kontinuierliches Training des Strahlenschutzes ist eine weitere wichtige Maßnahme zur Reduktion von Strahlenexposition im Hybrid-Operationsaal.

Abstract

The spectrum and complexity of endovascular procedures especially in aortic surgery (EVAR) and the implementation of hybrid operating theaters over the last two decades have significantly increased the use of X‑rays when performing fluoroscopy, angiography and cone beam computed tomography (CT). It is therefore mandatory for all members of operating teams including anesthesia and nursing personnel to improve individual knowledge, behavior and awareness of radiation exposure and radiation protection. For vascular surgeons, theoretical (physical and biological) basic knowledge and especially practical knowledge about radiation physics, radiation exposure and protection have become indispensable. This article provides tips on how to use and apply X‑rays based on the ALARA principle to reduce radiation exposure to the staff in operating theaters or interventional suites as much as possible but without diminishing image quality and subsequently patient safety. Individual protection with lead shields, personalized dosimetry as well as the use of new software-based applications (e.g. fusion imaging) together with modern hybrid operating theater imaging hardware equipment can significantly reduce the individual radiation exposure. New low-dose technologies must be coupled with good clinical practice and awareness for optimal radiation reduction. Each single stage has a high influence on the radiation dose used. Radiation reduction is a main goal beside lowering the amounts of contrast medium used and optimizing clinical results. Education and continuous training of personnel in radiation safety are important measures to reduce radiation exposure in the hybrid operating theater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10
Abb. 11
Abb. 12
Abb. 13
Abb. 14

Literatur

  1. Veith F (2005) Metamorphosis of vascular surgeons to endovascular specialists: must vascular surgery have an independent board and can we get there? J Endovasc Ther 12:269–273

    Article  Google Scholar 

  2. Greenhalgh RM, Brown LC, Kwong GP, Powell JT, Thompson SG, EVAR trial participants (2004) Comparison of endovascular aneurysm repair with open repair in patients with abdominal aortic aneurysm (EVAR trial 1), 30-day operative mortality results: Randomised controlled trial. Lancet 364(9437):843–848

    Article  CAS  Google Scholar 

  3. Prinssen M, Verhoeven EL, Buth J et al (2004) A randomized trial comparing conventional, and endovascular repair of abdominal aortic aneurysms. N Engl J Med 351(16):1607–1618

    Article  CAS  Google Scholar 

  4. Bisdas T, Borowski M, Stavroulakis K, Torsello G et al (2016) Endovascular therapy versus bypass surgery as first-line treatment strategies for critical limb Ischemia: results of the interim analysis of the CRITISCH registry. JACC Cardiovasc Interv 9(24):25572565+

    Article  Google Scholar 

  5. Steinbauer M, Katsargyris A, Greindl M, Töpe II, Verhoeven E (2013) Hybrid operation theatre in vascular surgery. Options and perspectives. Chirurg 84(12):1030–1035

    Article  CAS  Google Scholar 

  6. Verhoeven E, Katsargyris A, Töpel I, Steinbauer M (2013) Hybrid operating rooms: only for advanced Endovascular procedures? Zentralbl Chir 138(5):516–520

    Article  CAS  Google Scholar 

  7. Attigah N, Demirel S, Hakimi M, Bruijnen H, Schöffski O, Müller A, Geis U, Böckler D (2017) Hybrid operating rooms versus conventional operating rooms: economic comparisons in vascular surgery using the example of Endovascular aneurysm repair. Chirurg 88(7):587–594

    Article  CAS  Google Scholar 

  8. Bannazadeh M, Altinel O, KAsshyap V, Sun Z, Clair D, Sarac T (2009) Patterns of procedure-specific radiation exposure in the Endovascular era: impetus for further innovation. J Vasc Surg 49(6):1520–1524

    Article  Google Scholar 

  9. Hirschfeld JW Jr, Ferrari V, Bengel VA, Bengel FM et al (2018) ACC/HRS/NASCI/SCAI/SCCT expert consensus document on optimal use of ionizing radiation in cardiovascular imaging: best practices for safety and effectiveness. Catheter Cardiovasc Interv 92(2):E35–E97

    Article  Google Scholar 

  10. Miller DL, Vano E, Bartal G, Balter S, Dixon R, Padovani R, Schueler B, Cardella JF, de Baere T (2009) Occupational radiation protection in Interventional radiology: a joint guideline of the cardiovascular and Interventionalradiology society of europe and the society of Interventional radiology. Cardiovasc Intervent Radiol 33:230–239

    Article  Google Scholar 

  11. Clement CH, Ogino H et al (Hrsg) (2018) Occupational radiological protection in Interventional procedures. Annals oft he ICRP, Publication 139.. ISBN 978-1-5264-5903‑9 (ISSN 0146-6453)

    Google Scholar 

  12. Bundesamt für Strahlenschutz www.bfs.de. Zugegriffen: 18. Dezember 2019

  13. Racadio J, Nachabe R, Carelsen B, Racadio J et al (2014) Effect of real-time radiation dose feedback on pediatric Interventional radiology staff radiation exposure. J Vasc Interv Radiol 25(1):119–126

    Article  Google Scholar 

  14. Müller MC, Strauss A, Pflugmacher R, Nähle CP et al (2014) Evaluation of radiation exposure of personnel in an orthopaedic and trauma operation theatre using the new real-time dosimetry system “dose aware”. Z Orthopäd Unfallchir 152(4):381–388

    Article  Google Scholar 

  15. Alazzoni A, Gordon C, Syed J, Natarajan M et al (2015) Randomized controlled trial of radiation protection with a patient lead shield and a novel, Nonlead surgical cap for operators performing coronary Angiography or intervention. Circ Cardiovasc Interv 8(8):e2384

    Article  Google Scholar 

  16. Hertault A, Maurel B, Sobocisnki J, Gonzalez TM et al (2014) Impact of hybrid rooms with image fusion on radiation exposure during Endovascular aortic repair. Eur J Vasc Endovasc Surg 48(4):382–390

    Article  CAS  Google Scholar 

  17. Sailer AM, Schurink G, Bol M, deHaan MW et al (2015) Occupational radiation exposure during endovascular aortic repair. Cardovasc Intervent Radiol 38(49):827–832

    Article  Google Scholar 

  18. Albajati MA, Kelly S, Gallagher D, Dourado R (2015) Angulation of the C‑arm during complex Endovascular aortic procedures increases radiation exposure to the head. Eur J Vasc Endovasc Surg 49:396–402

    Article  Google Scholar 

  19. Goudeketting SR, Heinen SGH, Unlü C, van den Heuveln D, deVries JP, van Strjen MJ, Sailer AM (2017) Pros and cons of 3D image fusion in Endovascular aortic repair: a systematic review and meta-analysis. J Endovasc Ther 24(4):595–603

    Article  Google Scholar 

  20. Schulz CJ, Schmitt M, Böckler D, Geisbüsch P (2016) Fusion imaging to support Endovascular aneurysm repair using 3D-3D registration. J Endovasc Ther 23(5):791–799

    Article  Google Scholar 

  21. Schulz CJ, Böckler D, Krisam J, Geisbüsch P (2019) Two-dimensional-three-dimensional registration for fusion imaging is Noninferior to three-dimensional-three-dimensional registration in Infrarenal Endovascular aneurysm repair. J Vasc Surg 70(6):2005–2013

    Article  Google Scholar 

  22. Kaladji A, Villena A, Pascot R, Lalys F et al (2019) Fusion imaging for EVAR with mobile C‑arm. Ann Vasc Surg 55:166–174

    Article  Google Scholar 

  23. Kirkwood ML, Guild JB, Arbique GM, Anderson JA, Valentine C, Timaran C (2015) Surgeon radiation dose during complex Endovascular procedures. J Vasc Surg 62(2):457–463

    Article  Google Scholar 

  24. Panuccio G, Greenberg RK, Wunderle K, Mastracci TM, Eagleton MG, Davros W (2011) Comparison of indirect radiation dose estimates with directly measured radiation dose for patients and operators during complex Endovascular procedures. J Vasc Surg 53(4):885–894

    Article  Google Scholar 

  25. Attigah N, Oikonomou K, Hinz U, Knoch T, Demirel S, Verhouven E, Böckler D (2016) Radiation exposure to eye lens and operator hands during Endovascular procedures in hybrid operating rooms. J Vasc Surg 63(1):198–203

    Article  Google Scholar 

  26. Vañó E, Fernández JM, Sánchez RM, Dauer LT (2013) Realistic approach to estimate lens doses and cataract radiation risk in cardiology when personal dosimeters have not been regularly used. Health Phys 105(4):330–339

    Article  Google Scholar 

  27. Chohan MO, Sandoval D, Buchan A, Murray-Krezan C, Taylor CL (2014) Cranial radiation exposure during cerebral catheter angiography. J NeuroIntervent Surg 6(8):633–636

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Böckler.

Ethics declarations

Interessenkonflikt

D. Böckler übt Beratertätigkeiten für Siemens Healthineers aus und erhielt in der Vergangenheit Forschungsförderung und Honorare für Vorträge.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Böckler, D. Praktische Tipps für den persönlichen Strahlenschutz bei endovaskulären Eingriffen im Hybrid-Operationssaal. Gefässchirurgie 25, 19–30 (2020). https://doi.org/10.1007/s00772-020-00620-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00772-020-00620-9

Schlüsselwörter

Keywords

Navigation