Skip to main content
Log in

Oxidative und antioxidative Prozesse in abdominellen Aortenaneurysmen

Oxidative and Antioxidative Mechanisms in Abdominal Aortic Aneurysms

  • Netzwerk Grundlagenforschung
  • Published:
Gefässchirurgie Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Mazurek R, Dave JM, Chandran RR, Misra A, Sheikh AQ, Greif DM (2017) Vascular cells in blood vessel wall development and disease. Adv Pharmacol 78:323–350

    Article  CAS  PubMed  Google Scholar 

  2. Ashino T, Yamamoto M, Numazawa S (2016) Nrf2/Keap1 system regulates vascular smooth muscle cell apoptosis for vascular homeostasis: role in neointimal formation after vascular injury. Sci Rep 6:26291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Siasos G, Mourouzis K, Oikonomou E, Tsalamandris S, Tsigkou V, Vlasis K, Vavuranakis M, Zografos T, Dimitropoulos S, Papaioannou TG, Kalampogias A, Stefanadis C, Papavassiliou AG, Tousoulis D (2015) The role of Endothelial dysfunction in aortic aneurysms. Curr Pharm Des 21:4016–4034

    Article  CAS  PubMed  Google Scholar 

  4. Cai H, Harrison DG (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87:840–844

    Article  CAS  PubMed  Google Scholar 

  5. Hofmann A, Brunssen C, Morawietz H (2017) Contribution of lectin-like oxidized low-density lipoprotein receptor‑1 and LOX‑1 modulating compounds to vascular diseases. Vascular Pharmacology S1537-1891(17)30171-4

  6. Davis FM, Rateri DL, Daugherty A (2015) Abdominal aortic aneurysm: novel mechanisms and therapies. Curr Opin Cardiol 30:566–573

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sun J, Deng H, Zhou Z, Xiong X, Gao L (2018) Endothelium as a potential target for treatment of abdominal aortic aneurysm. Oxid Med Cell Longev 2018:6306542

    PubMed  PubMed Central  Google Scholar 

  8. Grote K, Flach I, Luchtefeld M, Akin E, Holland SM, Drexler H, Schieffer B (2003) Mechanical stretch enhances mRNA expression and proenzyme release of matrix metalloproteinase‑2 (MMP-2) via NAD(P)H oxidase-derived reactive oxygen species. Circ Res 92:e80–e86

    Article  CAS  PubMed  Google Scholar 

  9. Shin MH, Moon YJ, Seo JE, Lee Y, Kim KH, Chung JH (2008) Reactive oxygen species produced by NADPH oxidase, xanthine oxidase, and mitochondrial electron transport system mediate heat shock-induced MMP‑1 and MMP‑9 expression. Free Radic Biol Med 44:635–645

    Article  CAS  PubMed  Google Scholar 

  10. Chen Q, Wang Q, Zhu J, Xiao Q, Zhang L (2017) Reactive oxygen species: key regulators in vascular health and diseases. Br J Pharmacol 175(8):1279–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Griendling KK, Touyz RM, Zweier JL, Dikalov S, Chilian W, Chen YR, Harrison DG, Bhatnagar A, American Heart Association Council on Basic Cardiovascular S. (2016) Measurement of reactive oxygen species, reactive nitrogen species, and redox-dependent signaling in the cardiovascular system: a scientific statement from the American Heart Association. Circ Res 119:e39–e75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brown DI, Griendling KK (2015) Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circ Res 116:531–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Drummond GR, Sobey CG (2014) Endothelial NADPH oxidases: which NOX to target in vascular disease? Trends Endocrinol Metab 25:452–463

    Article  CAS  PubMed  Google Scholar 

  14. Miller FJ Jr., Sharp WJ, Fang X, Oberley LW, Oberley TD, Weintraub NL (2002) Oxidative stress in human abdominal aortic aneurysms: a potential mediator of aneurysmal remodeling. arterioscler Thromb Vasc Biol 22:560–565

    Article  CAS  PubMed  Google Scholar 

  15. Emeto TI, Moxon JV, Au M, Golledge J (2016) Oxidative stress and abdominal aortic aneurysm: potential treatment targets. Clin Sci 130:301–315

    Article  CAS  Google Scholar 

  16. Guzik B, Sagan A, Ludew D, Mrowiecki W, Chwala M, Bujak-Gizycka B, Filip G, Grudzien G, Kapelak B, Zmudka K, Mrowiecki T, Sadowski J, Korbut R, Guzik TJ (2013) Mechanisms of oxidative stress in human aortic aneurysms—association with clinical risk factors for atherosclerosis and disease severity. Int J Cardiol 168:2389–2396

    Article  PubMed  PubMed Central  Google Scholar 

  17. McCormick ML, Gavrila D, Weintraub NL (2007) Role of oxidative stress in the pathogenesis of abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 27:461–469

    Article  CAS  PubMed  Google Scholar 

  18. Rivera J, Sobey CG, Walduck AK, Drummond GR (2010) Nox isoforms in vascular pathophysiology: insights from transgenic and knockout mouse models. redox Rep 15:50–63

    Article  CAS  PubMed  Google Scholar 

  19. Murdoch CE, Alom-Ruiz SP, Wang M, Zhang M, Walker S, Yu B, Brewer A, Shah AM (2011) Role of endothelial Nox2 NADPH oxidase in angiotensin II-induced hypertension and vasomotor dysfunction. Basic Res Cardiol 106:527–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lassegue B, Griendling KK (2010) NADPH oxidases: functions and pathologies in the vasculature. Arterioscler Thromb Vasc Biol 30:653–661

    Article  CAS  PubMed  Google Scholar 

  21. Jung O, Schreiber JG, Geiger H, Pedrazzini T, Busse R, Brandes RP (2004) gp91phox-containing NADPH oxidase mediates endothelial dysfunction in renovascular hypertension. Circulation 109:1795–1801

    Article  CAS  PubMed  Google Scholar 

  22. Schurmann C, Rezende F, Kruse C, Yasar Y, Lowe O, Fork C, van de Sluis B, Bremer R, Weissmann N, Shah AM, Jo H, Brandes RP, Schroder K (2015) The NADPH oxidase Nox4 has anti-atherosclerotic functions. Eur Heart J 36:3447–3456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Langbein H, Brunssen C, Hofmann A, Cimalla P, Brux M, Bornstein SR, Deussen A, Koch E, Morawietz H (2016) NADPH oxidase 4 protects against development of endothelial dysfunction and atherosclerosis in LDL receptor deficient mice. Eur Heart J 37:1753–1761

    Article  CAS  PubMed  Google Scholar 

  24. Sies H (2017) Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol 11:613–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang Y, Krishna S, Walker PJ, Norman P, Golledge J (2013) Transforming growth factor-beta and abdominal aortic aneurysms. Cardiovasc Pathol 22:126–132

    Article  CAS  PubMed  Google Scholar 

  26. Guzik TJ, Sadowski J, Kapelak B, Jopek A, Rudzinski P, Pillai R, Korbut R, Channon KM (2004) Systemic regulation of vascular NAD(P)H oxidase activity and nox isoform expression in human arteries and veins. Arterioscler Thromb Vasc Biol 24:1614–1620

    Article  CAS  PubMed  Google Scholar 

  27. Kigawa Y, Miyazaki T, Lei XF, Nakamachi T, Oguchi T, Kim-Kaneyama JR, Taniyama M, Tsunawaki S, Shioda S, Miyazaki A (2014) NADPH oxidase deficiency exacerbates angiotensin II-induced abdominal aortic aneurysms in mice. Arterioscler Thromb Vasc Biol 34:2413–2420

    Article  CAS  PubMed  Google Scholar 

  28. Siu KL, Li Q, Zhang Y, Guo J, Youn JY, Du J, Cai H (2017) NOX isoforms in the development of abdominal aortic aneurysm. Redox Biol 11:118–125

    Article  CAS  PubMed  Google Scholar 

  29. Lu WW, Jia LX, Ni XQ, Zhao L, Chang JR, Zhang JS, Hou YL, Zhu Y, Guan YF, Yu YR, Du J, Tang CS, Qi YF (2016) Intermedin1-53 attenuates abdominal aortic aneurysm by inhibiting oxidative stress. arterioscler Thromb Vasc Biol 36:2176–2190

    Article  CAS  PubMed  Google Scholar 

  30. Jimenez-Altayo F, Meirelles T, Crosas-Molist E, Sorolla MA, Del Blanco DG, Lopez-Luque J, Mas-Stachurska A, Siegert AM, Bonorino F, Barbera L, Garcia C, Condom E, Sitges M, Rodriguez-Pascual F, Laurindo F, Schroder K, Ros J, Fabregat I, Egea G (2018) Redox stress in Marfan syndrome: dissecting the role of the NADPH oxidase NOX4 in aortic aneurysm. Free Radic Biol Med 118:44–58

    Article  CAS  PubMed  Google Scholar 

  31. Gavazzi G, Deffert C, Trocme C, Schappi M, Herrmann FR, Krause KH (2007) NOX1 deficiency protects from aortic dissection in response to angiotensin II. Hypertension 50:189–196

    Article  CAS  PubMed  Google Scholar 

  32. Sies H, Berndt C, Jones DP (2017) Oxidative stress. Annu Rev Biochem 86:715–748

    Article  CAS  PubMed  Google Scholar 

  33. Alfieri A, Srivastava S, Siow RC, Modo M, Fraser PA, Mann GE (2011) Targeting the Nrf2-Keap1 antioxidant defence pathway for neurovascular protection in stroke. J Physiol 589:4125–4136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tomczyk M, Kraszewska I, Dulak J, Jazwa-Kusior A (2019) Modulation of the monocyte/macrophage system in heart failure by targeting heme oxygenase‑1. Vasc Pharmacol 112:79–90

    Article  CAS  Google Scholar 

  35. Calay D, Mason JC (2014) The multifunctional role and therapeutic potential of HO‑1 in the vascular endothelium. Antioxidants & Redox Signaling 20:1789–1809

    Article  CAS  Google Scholar 

  36. Kaneda H, Ohno M, Taguchi J, Togo M, Hashimoto H, Ogasawara K, Aizawa T, Ishizaka N, Nagai R (2002) Heme oxygenase‑1 gene promoter polymorphism is associated with coronary artery disease in Japanese patients with coronary risk factors. Arterioscler Thromb Vasc Biol 22:1680–1685

    Article  CAS  PubMed  Google Scholar 

  37. Otterbein LE, Foresti R, Motterlini R (2016) Heme Oxygenase‑1 and carbon monoxide in the heart: the balancing act between danger signaling and pro-survival. circ Res 118:1940–1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ishikawa K, Sugawara D, Goto J, Watanabe Y, Kawamura K, Shiomi M, Itabe H, Maruyama Y (2001) Heme oxygenase‑1 inhibits atherogenesis in Watanabe heritable hyperlipidemic rabbits. Circulation 104:1831–1836

    Article  CAS  PubMed  Google Scholar 

  39. Ishikawa K, Sugawara D, Wang X, Suzuki K, Itabe H, Maruyama Y, Lusis AJ (2001) Heme oxygenase‑1 inhibits atherosclerotic lesion formation in ldl-receptor knockout mice. Circ Res 88:506–512

    Article  CAS  PubMed  Google Scholar 

  40. Nakayama M, Takahashi K, Komaru T, Fukuchi M, Shioiri H, Sato K, Kitamuro T, Shirato K, Yamaguchi T, Suematsu M, Shibahara S (2001) Increased expression of heme oxygenase‑1 and bilirubin accumulation in foam cells of rabbit atherosclerotic lesions. Arterioscler Thromb Vasc Biol 21:1373–1377

    Article  CAS  PubMed  Google Scholar 

  41. Wang LJ, Lee TS, Lee FY, Pai RC, Chau LY (1998) Expression of heme oxygenase‑1 in atherosclerotic lesions. Am J Pathol 152:711–720

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Orozco LD, Kapturczak MH, Barajas B, Wang X, Weinstein MM, Wong J, Deshane J, Bolisetty S, Shaposhnik Z, Shih DM, Agarwal A, Lusis AJ, Araujo JA (2007) Heme oxygenase‑1 expression in macrophages plays a beneficial role in atherosclerosis. Circ Res 100:1703–1711

    Article  CAS  PubMed  Google Scholar 

  43. Schillinger M, Exner M, Mlekusch W, Domanovits H, Huber K, Mannhalter C, Wagner O, Minar E (2002) Heme oxygenase‑1 gene promoter polymorphism is associated with abdominal aortic aneurysm. Thromb Res 106:131–136

    Article  CAS  PubMed  Google Scholar 

  44. Ho YC, Wu ML, Gung PY, Chen CH, Kuo CC, Yet SF (2016) Heme oxygenase‑1 deficiency exacerbates angiotensin II-induced aortic aneurysm in mice. Oncotarget 7:67760–67776

    PubMed  PubMed Central  Google Scholar 

  45. Cuadrado A, Manda G, Hassan A, Alcaraz MJ, Barbas C, Daiber A, Ghezzi P, Leon R, Lopez MG, Oliva B, Pajares M, Rojo AI, Robledinos-Anton N, Valverde AM, Guney E, Schmidt H (2018) Transcription factor NRF2 as a therapeutic target for chronic diseases: a systems medicine approach. Pharmacol Rev 70:348–383

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hofmann.

Ethics declarations

Interessenkonflikt

A. Hofmann, S. Wolk, M. Müglich, S. Tietze und C. Reeps geben an, dass kein Interessenkonflikt besteht.

Alle beschriebenen Untersuchungen am Menschen (Abbildung 1a, Abbildung 1b) wurden mit Zustimmung der zuständigen Ethik-Kommission, im Einklang mit nationalem Recht sowie gemäß der Deklaration von Helsinki von 1975 (in der aktuellen, überarbeiteten Fassung) durchgeführt. Von allen beteiligten Patienten liegt eine Einverständniserklärung vor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofmann, A., Wolk, S., Müglich, M. et al. Oxidative und antioxidative Prozesse in abdominellen Aortenaneurysmen. Gefässchirurgie 25, 124–128 (2020). https://doi.org/10.1007/s00772-020-00614-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00772-020-00614-7

Navigation