Skip to main content

Advertisement

Log in

Wo steht der pedale Bypass heute?

Where does the pedal bypass stand today?

  • Leitthema
  • Published:
Gefässchirurgie Aims and scope Submit manuscript

Zusammenfassung

Seit mehreren Jahrzehnten stellt der autologe Venenbypass auf Arterien des Fußes eine wichtige Option zum Extremitätenerhalt bei chronisch kritischer Extremitätenischämie, insbesondere beim Diabetiker dar. 1‑Jahres-Offenheitsraten von 50–80 % und Beinerhaltungsraten von >80 % haben die Effektivität dieser periphersten Form der chirurgischen Gefäßrekonstruktion unterstrichen. Die zunehmenden Möglichkeiten der endovaskulären Behandlung von Stenosen und Okklusionen der Unterschenkelarterien haben die Rolle des pedalen Bypasses deutlich zurückgedrängt. Die geringere Invasivität mit mutmaßlich reduzierter Morbidität und Letalität lassen perkutane Angioplastien in dieser Indikation primär attraktiver erscheinen. Dennoch zeigen gerade neuere Untersuchungen, dass die primäre Revaskularisation des Fußes durch einen Bypass („straight line to the foot“) eine effektivere und durablere Abheilung von Fußwunden zu ermöglichen scheint. Die Einhaltung des Angiosom-Konzepts spielt dabei jedoch im Vergleich zur endovaskulären Therapie wahrscheinlich eine geringere Rolle. Diagnostische Verfahren wie die Duplexsonographie und die kontrastmittelverstärkte Magnetresonanzangiographie können wichtige ergänzende Verfahren zur Detektion anschlussfähiger Fußarterien sein. Neben der V. saphena magna kommen alternative, autologe Bypassgrafts wie Armvenen und die V. saphena parva in Betracht. Eine langfristige Überwachung der Funktion der pedalen Bypässe wird immer wieder empfohlen. Um auch zukünftig den Stellenwert dieser wichtigen Option zur Behandlung einer chronisch kritischen Extremitätenischämie bewerten zu können, sind dringend weitere Studien erforderlich.

Abstract

For decades autologous bypass surgery to arteries of the foot has been an option for revascularization in critical limb ischemia, particularly in diabetic patients. The 1‑year patency rates of 50–80 % and limb salvage rates of more than 80 % have proven the effectiveness of this type of peripheral vascular reconstruction; however, the growing importance of endovascular management of stenosis and occlusions of crural arteries has substantially lowered the role of pedal bypass surgery. Less invasiveness with reduced morbidity and mortality render percutaneous angioplasty techniques more attractive compared to open surgery, but recent data suggest that primary revascularization by bypass surgery (“straight line to the foot”) may provide a more effective and sustained healing of pedal wounds; however, adherence to the angiosome concept probably plays a minor role in comparison to endovascular treatment. Diagnostic measures, such as duplex ultrasound and contrast-enhanced magnetic resonance imaging may serve as important complimentary methods for detection of suitable pedal target vessels. Apart from the great saphenous vein alternative autologous grafts, such as arm veins and the small saphenous vein can be used. Long-term surveillance of pedal bypasses has widely been recommended. More studies are warranted for a better understanding of the future role of this type of bypass surgery in critical limb ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Abdelhamid MF, Davies RS, Rai S et al (2010) Below-the-ankle angioplasty is a feasible and effective intervention for critical leg ischaemia. Eur J Vasc Endovasc Surg 39:762–768

    Article  CAS  PubMed  Google Scholar 

  2. Aherne T, Kheirelseid E, O’neill D et al (2016) The use of arteriovenous fistulae as an adjunct to peripheral arterial bypass: a systematic review and meta-analysis. Eur J Vasc Endovasc Surg 51:707–717

    Article  CAS  PubMed  Google Scholar 

  3. Albers M, Romiti M, Brochado-Neto FC et al (2006) Meta-analysis of popliteal-to-distal vein bypass grafts for critical ischemia. J Vasc Surg 43:498–503

    Article  PubMed  Google Scholar 

  4. Anonymous (2000) Efficacy of oral anticoagulants compared with aspirin after infrainguinal bypass surgery (The Dutch Bypass Oral Anticoagulants or Aspirin Study): a randomised trial. Lancet 355:346–351

    Article  Google Scholar 

  5. Ascer E, Veith FJ, Gupta SK (1988) Bypasses to plantar arteries and other tibial branches: an extended approach to limb salvage. J Vasc Surg 8:434–441

    Article  CAS  PubMed  Google Scholar 

  6. Azuma N, Uchida H, Kokubo T et al (2012) Factors influencing wound healing of critical ischaemic foot after bypass surgery: is the angiosome important in selecting bypass target artery? Eur J Vasc Endovasc Surg 43:322–328

    Article  CAS  PubMed  Google Scholar 

  7. Baird RJ, Tutassaura H, Miyagishima RT (1970) Saphenous vein bypass grafts to the arteries of the ankle and foot. Ann Surg 172:1059–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ballotta E, Renon L, De Rossi A et al (2004) Prospective randomized study on reversed saphenous vein infrapopliteal bypass to treat limb-threatening ischemia: common femoral artery versus superficial femoral or popliteal and tibial arteries as inflow. J Vasc Surg 40:732–740

    Article  PubMed  Google Scholar 

  9. Bell PR (1985) Are distal vascular procedures worthwhile? Br J Surg 72:335

    Article  CAS  PubMed  Google Scholar 

  10. Berceli SA, Chan AK, Pomposelli FB Jr. et al (1999) Efficacy of dorsal pedal artery bypass in limb salvage for ischemic heel ulcers. J Vasc Surg 30:499–508

    Article  CAS  PubMed  Google Scholar 

  11. Biancari F, Juvonen T (2014) Angiosome-targeted lower limb revascularization for ischemic foot wounds: systematic review and meta-analysis. Eur J Vasc Endovasc Surg 47:517–522

    Article  CAS  PubMed  Google Scholar 

  12. Bisdas T, Borowski M, Stavroulakis K et al (2016) Endovascular therapy versus bypass surgery as first-line treatment strategies for critical limb ischemia: results of the interim analysis of the CRITISCH registry. Jacc Cardiovasc Interv 9:2557–2565

    Article  PubMed  Google Scholar 

  13. Brochado Neto FC, Cury MV, Costa VS et al (2010) Inframalleolar bypass grafts for limb salvage. Eur J Vasc Endovasc Surg 40:747–753

    Article  CAS  PubMed  Google Scholar 

  14. Brownrigg JR, Hinchliffe RJ, Apelqvist J et al (2016) Performance of prognostic markers in the prediction of wound healing or amputation among patients with foot ulcers in diabetes: a systematic review. Diabetes Metab Res Rev 32(Suppl 1):128–135

    Article  CAS  PubMed  Google Scholar 

  15. Cao P, Eckstein HH, De Rango P et al (2011) Chapter II: diagnostic methods. Eur J Vasc Endovasc Surg 42(Suppl 2):S13–S32

    Article  PubMed  Google Scholar 

  16. Clifford EJ, Fry RE, Clagett GP et al (1989) Results of in-situ saphenous vein bypass to the foot. Am J Surg 158:502–504 (discussion 504–505)

    Article  CAS  PubMed  Google Scholar 

  17. Darling JD, Mccallum JC, Soden PA et al (2017) Results for primary bypass versus primary angioplasty/stent for lower extremity chronic limb-threatening ischemia. J Vasc Surg 66:466–475

    Article  PubMed  Google Scholar 

  18. Dohmen A, Eder S, Euringer W et al (2012) Chronic critical limb ischemia. Dtsch Arztebl Int 109:95–101

    PubMed  PubMed Central  Google Scholar 

  19. Domenig CM, Hamdan AD, Holzenbein TJ et al (2005) Timing of pedal bypass failure and its impact on the need for amputation. Ann Vasc Surg 19:56–62

    Article  PubMed  Google Scholar 

  20. Dorweiler B, Neufang A, Schmiedt W et al (2002) Pedal arterial bypass for limb salvage in patients with diabetes mellitus. Eur J Vasc Endovasc Surg 24:309–313

    Article  CAS  PubMed  Google Scholar 

  21. Dunschede F, Paul N, Meyer A et al (2017) Autologous bypass to pedal side branches to avoid a major amputation. Zentralbl Chir 142:464–469

    Article  CAS  PubMed  Google Scholar 

  22. Enzmann FK, Eder SK, Aschacher T et al (2017) Tibiodistal vein bypass in critical limb ischemia and its role after unsuccessful tibial angioplasty. J Vasc Surg. https://doi.org/10.1016/j.jvs.2017.07.127

    PubMed  Google Scholar 

  23. Franke S, Bruch HP, Repenning K et al (1985) Femoropedal bypass: a step forward in peripheral bypass surgery? Chirurg 56:445–448

    CAS  PubMed  Google Scholar 

  24. Gargiulo M, Giovanetti F, Bianchini Massoni C et al (2014) Bypass to the ankle and foot in the era of endovascular therapy of tibial disease. Results and factors influencing the outcome. J Cardiovasc Surg (Torino) 55:367–374

    CAS  Google Scholar 

  25. Gargiulo NJ 3rd, Veith FJ, Lipsitz EC et al (2008) Perimalleolar and pedal thromboembolectomy and bypasses to treat distal embolization during aortoiliac aneurysm repairs. J Vasc Surg 48:43–46

    Article  PubMed  Google Scholar 

  26. Gates J, Hartnell GG (2000) Optimized diagnostic angiography in high-risk patients with severe peripheral vascular disease. Radiographics 20:121–133

    Article  CAS  PubMed  Google Scholar 

  27. Goltz JP, Planert M, Horn M et al (2016) Retrograde transpedal access for revascularization of below-the-knee arteries in patients with critical limb Ischemia after an unsuccessful antegrade transfemoral approach. Rofo 188:940–948

    Article  CAS  PubMed  Google Scholar 

  28. Hofmann WJ, Walter J, Ugurluoglu A et al (2004) Preoperative high-frequency duplex scanning of potential pedal target vessels. J Vasc Surg 39:169–175

    Article  CAS  PubMed  Google Scholar 

  29. Hughes K, Domenig CM, Hamdan AD et al (2004) Bypass to plantar and tarsal arteries: an acceptable approach to limb salvage. J Vasc Surg 40:1149–1157

    Article  PubMed  Google Scholar 

  30. Kikuchi S, Sasajima T, Inaba M et al (2017) Evaluation of paramalleolar and inframalleolar bypasses in dialysis- and nondialysis-dependent patients with critical limb ischemia. J Vasc Surg. https://doi.org/10.1016/j.jvs.2017.07.116

    Google Scholar 

  31. Langer S, Kramer N, Mommertz G et al (2009) Unmasking pedal arteries in patients with critical ischemia using time-resolved contrast-enhanced 3D MRA. J Vasc Surg 49:1196–1202

    Article  PubMed  Google Scholar 

  32. Levine AW, Davis RC, Gingery RO et al (1989) In situ bypass to the dorsalis pedis and tibial arteries at the ankle. Ann Vasc Surg 3:205–209

    Article  CAS  PubMed  Google Scholar 

  33. McBride OM, Chalmers RT (2017) Follow-up and surveillance of vein grafts: when and how to intervene to prevent complications. J Cardiovasc Surg (torino) 58:284–292

    Google Scholar 

  34. Mccaughan JJ Jr. (1966) Bypass graft to the posterior tibial artery at the ankle. Case reports. Am Surg 32:126–130

    PubMed  Google Scholar 

  35. Mills JL (2016) Lower limb ischaemia in patients with diabetic foot ulcers and gangrene: recognition, anatomic patterns and revascularization strategies. Diabetes Metab Res Rev 32(Suppl 1):239–245

    Article  PubMed  Google Scholar 

  36. Morris GC Jr., De Bakey ME, Cooley DA et al (1959) Arterial bypass below the knee. Surg Gynecol Obstet 108:321–332

    PubMed  Google Scholar 

  37. Muir KB, Cook PR, Sirkin MR et al (2017) Tibioperoneal occlusive disease: a review of below the knee endovascular therapy in patients with critical limb ischemia. Ann Vasc Surg 38:64–71

    Article  PubMed  Google Scholar 

  38. Neufang A, Espinola-Klein C, Dorweiler B et al (2008) Questionable value of adjuvant arteriovenous fistula in pedal bypass at high risk for early failure. Ann Vasc Surg 22:379–387

    Article  PubMed  Google Scholar 

  39. Neufang A, Dorweiler B, Espinola-Klein C et al (2014) Outcomes of complex femorodistal sequential autologous vein and biologic prosthesis composite bypass grafts. J Vasc Surg 60:1543–1553

    Article  PubMed  Google Scholar 

  40. Neufang A, Vargas-Gomez C, Ewald P et al (2017) Very distal vein bypass in patients with thromboangiitis obliterans. Vasa 46:304–309

    Article  PubMed  Google Scholar 

  41. Neville RF, Sidawy AN (2012) Surgical bypass: when is it best and do angiosomes play a role? Semin Vasc Surg 25:102–107

    Article  PubMed  Google Scholar 

  42. O’banion LA, Wu B, Eichler CM et al (2017) Cryopreserved saphenous vein as a last-ditch conduit for limb salvage. J Vasc Surg 66:844–849

    Article  PubMed  Google Scholar 

  43. Okazaki J, Matsuda D, Tanaka K et al (2017) Analysis of wound healing time and wound-free period as outcomes after surgical and endovascular revascularization for critical lower limb ischemia. J Vasc Surg. https://doi.org/10.1016/j.jvs.2017.07.122

    PubMed  Google Scholar 

  44. Paetz B, Maeder N, Meybier H et al (1991) Pedal reconstructions for limb salvage. Eur J Vasc Surg 5:621–625

    Article  CAS  PubMed  Google Scholar 

  45. Pomposelli FB Jr., Jepsen SJ, Gibbons GW et al (1990) Efficacy of the dorsal pedal bypass for limb salvage in diabetic patients: short-term observations. J Vasc Surg 11:745–751 (discussion 751–742)

    Article  PubMed  Google Scholar 

  46. Pomposelli FB, Kansal N, Hamdan AD et al (2003) A decade of experience with dorsalis pedis artery bypass: analysis of outcome in more than 1000 cases. J Vasc Surg 37:307–315

    Article  PubMed  Google Scholar 

  47. Rashid H, Slim H, Zayed H et al (2013) The impact of arterial pedal arch quality and angiosome revascularization on foot tissue loss healing and infrapopliteal bypass outcome. J Vasc Surg 57:1219–1226

    Article  PubMed  Google Scholar 

  48. Rohrl B, Kunz RP, Oberholzer K et al (2009) Gadofosveset-enhanced MR angiography of the pedal arteries in patients with diabetes mellitus and comparison with selective intraarterial DSA. Eur Radiol 19:2993–3001

    Article  PubMed  Google Scholar 

  49. Rumenapf G, Chantelau E, Morbach S (2012) Neither procedure is superior. Dtsch Arztebl Int 109:542–543 (author reply 543–544)

    PubMed  PubMed Central  Google Scholar 

  50. Saarinen E, Kauhanen P, Soderstrom M et al (2016) Long-term results of Inframalleolar bypass for critical limb Ischaemia. Eur J Vasc Endovasc Surg 52:815–822

    Article  CAS  PubMed  Google Scholar 

  51. Schneider PA, Caps MT, Ogawa DY et al (2001) Intraoperative superficial femoral artery balloon angioplasty and popliteal to distal bypass graft: an option for combined open and endovascular treatment of diabetic gangrene. J Vasc Surg 33:955–962

    Article  CAS  PubMed  Google Scholar 

  52. Shah DM, Darling RC 3rd, Chang BB et al (1992) Is long vein bypass from groin to ankle a durable procedure? An analysis of a ten-year experience. J Vasc Surg 15:402–407 (discussion 407–408)

    Article  CAS  PubMed  Google Scholar 

  53. Sheahan MG, Hamdan AD, Veraldi JR et al (2005) Lower extremity minor amputations: the roles of diabetes mellitus and timing of revascularization. J Vasc Surg 42:476–480

    Article  PubMed  Google Scholar 

  54. Shieber W, Parks C (1974) Dorsalis pedis artery in bypass grafting. Am J Surg 128:752–755

    Article  CAS  PubMed  Google Scholar 

  55. Staffa R, Kriz Z, Gregor Z et al (2007) Pedal bypass grafting on arteriographically invisible foot arteries detected by duplex ultrasound for limb salvage. Minerva Chir 62:115–124

    CAS  PubMed  Google Scholar 

  56. Uhl C, Hock C, Betz T et al (2014) Pedal bypass surgery after crural endovascular intervention. J Vasc Surg 59:1583–1587

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Kellersmann.

Ethics declarations

Interessenkonflikt

R. Kellersmann gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kellersmann, R. Wo steht der pedale Bypass heute?. Gefässchirurgie 23, 13–18 (2018). https://doi.org/10.1007/s00772-017-0350-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00772-017-0350-z

Schlüsselwörter

Keywords

Navigation