Skip to main content

Advertisement

Log in

Stammzell-basierter biologischer Gefäßersatz

Stem cell-based strategies in vascular surgery

  • Leitthema
  • Published:
Gefässchirurgie Aims and scope Submit manuscript

Zusammenfassung

Eine chronisch-kritische Ischämie bei Patienten mit zugrunde liegender arterieller Verschlusskrankheit erfordert rekonstruktive vaskuläre chirurgische Eingriffe, die bislang mit körpereigenen Venensegmenten oder synthetischem Gefäßmaterial durchgeführt werden. Die begrenzte Verfügbarkeit von geeigneten autologen Gefäßtransplantaten mit niedrigem Durchmesser bei vielen Patienten und die offensichtlichen Nachteile von synthetischem Bypassmaterial zeigen die Notwendigkeit zur Entwicklung von klinisch verwendbaren biologisch konstruierten Blutgefäßsubstituten auf. Trotz erheblicher Fortschritte in diesem Bereich in den letzten zwei Jahrzehnten war ihre Implementierung in die klinische Routine eine Herausforderung. Die begrenzte replikative Lebensdauer von menschlichen adulten Gefäßzellen und ihre langsame Rate bei der Produktion von Kollagenmatrix in vitro stellten gravierende Probleme bei der Entwicklung mechanisch robuster und biologisch funktioneller künstlicher Transplantate dar. Mit den jüngsten Fortschritten in der Stammzellenforschung sind neue Zelltypen für das vaskuläre Tissue-Engineering verfügbar geworden. Insbesondere die Entdeckung von humanen induzierten pluripotenten Stammzellen (iPS-Zellen), die aus adulten differenzierten Zellen stammen, sowie von humanen multipotenten adulten mesenchymalen Stammzellen (ohne Genmodifizierungen und den mit ihnen verbundenen Sicherheitsbedenken) können die Entwicklung von neuem autologem Zellgewebe vorantreiben. Wir stellen die aktuellen Entwicklungen auf dem Gebiet der vaskulären Progenitorzellen vor und diskutieren die Möglichkeiten und Herausforderungen für den klinischen Einsatz von biologisch konstruierten Gefäßsubstituten.

Abstract

Critical chronic ischemia in patients with underlying arterial occlusive disease requires vascular reconstructive surgery. The limited supply of suitable small-diameter autologous vascular grafts in many patients and obvious disadvantages of synthetic bypass material demand the development of clinically usable tissue-engineered blood vessel substitutes. Despite substantial progress in the field over the last two decades, their implementation into the clinical routine has been challenging. The limited replicative life span of human adult vascular cells and their slow rate of collagenous matrix production in vitro have posed important problems in the development of mechanically robust and biologically functional engineered grafts. With recent advances in stem cell research, new cell sources for vascular tissue engineering have become available. In particular, the discovery of human induced pluripotent stem (iPS) cells derived from adult differentiated cells, as well as of human multipotent adult mesenchymal stem cells without gene modification requirements and related safety concerns, may advance the development of novel autologous cell-based tissue engineering approaches. Here we discuss recent developments in the field of vascular progenitor cells and opportunities and challenges for the clinical translation of stem cell-engineered vascular tissue substitutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Burton DG, Giles PJ, Sheerin AN et al (2009) Microarray analysis of senescent vascular smooth muscle cells: a link to atherosclerosis and vascular calcification. Exp Gerontol 44:659–665

    Article  CAS  PubMed  Google Scholar 

  2. Dahl SL, Kypson AP, Lawson JH et al (2011) Readily available tissue-engineered vascular grafts. Sci Transl Med 3:68–69

    Article  Google Scholar 

  3. DiMuzio P, Tulenko T (2007) Tissue engineering applications to vascular bypass graft development: the use of adipose-derived stem cells. J Vasc Surg 45(Suppl A):A99–A103

    Article  PubMed  Google Scholar 

  4. Ferreira LS, Gerecht S, Shieh HF et al (2007) Vascular progenitor cells isolated from human embryonic stem cells give rise to endothelial and smooth muscle like cells and form vascular networks in vivo. Circ Res 101:286–294

    Article  CAS  PubMed  Google Scholar 

  5. Frank NY et al (2003) Regulation of progenitor cell fusion by ABCB5 P‑glycoprotein, a novel human ATP-binding cassette transporter. J Biol Chem 278:47156–47165. https://doi.org/10.1074/jbc.M308700200

    Article  CAS  PubMed  Google Scholar 

  6. Gong Z, Niklason LE (2008) Small-diameter human vessel wall engineered from bone marrow-derived mesenchymal stem cells (hMSCs). FASEB J 22:1635–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hill KL, Obrtlikova P, Alvarez DF et al (2010) Human embryonic stem cell-derivedvascular progenitor cells capable of endothelial and smooth muscle cell function. Exp Hematol 38:246–257.e1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jiang D, Muschhammer J, Qi Y et al (2016) Suppression of neutrophil-mediated tissue damage – a novel skill of mesenchymal stem cells. Stem Cells 34(9):2393–2406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ksander BR, Kolovou PE, Wilson BJ et al (2014) ABCB5 is a limbal stem cell gene required for corneal development and repair. Nature 511(7509):353–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Konig G, McAllister TN, Dusserre N et al (2009) Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials 30:1542–1550

    Article  CAS  PubMed  Google Scholar 

  11. Lee TH, Song SH, Kim KL et al (2010) Functional recapitulation of smooth muscle cells via induced pluripotent stem cells from human aortic smooth muscle cells. Circ Res 106:120–128

    Article  CAS  PubMed  Google Scholar 

  12. Levenberg S, Rouwkema J, Macdonald M et al (2005) Engineering vascularized skeletal muscle tissue. Nat Biotechnol 23:879–884

    Article  CAS  PubMed  Google Scholar 

  13. L’Heureux NS, Paquet R, Labbe L et al (1998) A completely biological tissue-engineered human blood vessel. FASEB J 12:47–56

    Article  PubMed  Google Scholar 

  14. L’Heureux N, McAllister TN, de la Fuente LM (2007) Tissue-engineered blood vessel for adult arterial revascularization. N Eng J Med 357(14):1451–1453

    Article  Google Scholar 

  15. Olausson M, Patil PB, Kuna VK et al (2012) Transplantation of an allogeneic vein bioengineered with autologous stem cells: a proof-of-concept study. Lancet 380(9838):230–237

    Article  PubMed  Google Scholar 

  16. Oswald J, Boxberger S, Jorgensen B et al (2004) Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 22:377–384

    Article  PubMed  Google Scholar 

  17. Poh M, Boyer M, Solan A et al (2005) Blood vessels engineered from human cells. Lancet 365:2122–2124

    Article  PubMed  Google Scholar 

  18. Rodriguez LV, Alfonso Z, Zhang R et al (2006) Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells. Proc Natl Acad Sci Usa 103:12167–12172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schatton YJ, Kleffel S et al (2015) ABCB5 identifies immunoregulatory dermal cells. Cell Rep 12(10):1564–1574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shinoka T, Shum-Tim D, Ma PX et al (1998) Creation of viable pulmonary artery autografts through tissue engineering. J Thorac Cardiovasc Surg 115(3):536–545

    Article  CAS  PubMed  Google Scholar 

  21. Shinoka T, Imai Y, Ikada Y (2001) Transplantation of a tissue-engineered pulmonary artery. N Eng J Med 344(7):532–533

    Article  CAS  Google Scholar 

  22. Shinoka T, Matsumura G, Hibino N et al (2005) Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg 129(6):1330–1338

    Article  Google Scholar 

  23. Stadtfeld M, Nagaya M, Utikal J et al (2008) Induced pluripotent stem cells generated without viral integration. Science 322:945–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sundaram S, Niklason L (2012) Smooth muscle and other cell sources for human blood vessel engineering. Cells Tissues Organs 195:15–25

    Article  CAS  PubMed  Google Scholar 

  25. Syedain ZH, Meier LA, Bjork JW et al (2011) Implantable arterial grafts from human fibroblasts and fibrin using a multigraft pulsed flow-stretch bioreactor with noninvasive strength monitoring. Biomaterials 32:714–722

    Article  CAS  PubMed  Google Scholar 

  26. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  27. Volpicelli ER, Lezcano C, Zhan Q (2014) The multidrug-resistance transporter ABCB5 is expressed in human placenta. Int J Gynecol Pathol 33(1):45–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Webber BR, O’Connor KT, McElmury RT et al (2017) Rapid generation of Col7a1 −/− mouse model of recessive dystrophic epidermolysis bullosa and partial rescue via immunosuppressive dermal mesenchymal stem cells. Lab Investig 97(10):1218–1224

    Article  CAS  PubMed  Google Scholar 

  29. Weinberg CB, Bell E (1986) A blood vessel model constructed from collagen and cultured vascular cells. Science 231(4736):397–400

    Article  CAS  PubMed  Google Scholar 

  30. Wilson BJ, Schatton T, Zhan Q et al (2011) ABCB5 identifies a therapy-refractory tumor cell population in colorectal cancer patients. Cancer Res 71:5307–5316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Woltjen K, Michael IP, Mohseni P et al (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458:766–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wystrychowski W, McAllister TN, Zagalski K et al (2014) First human use of an allogeneic tissue-engineered vascular graft for hemodialysis access. J Vasc Surg 60(5):1353–1357

    Article  PubMed  Google Scholar 

Download references

Förderung

Diese Arbeit wurde vom National Eye Institute, National Institutes of Health (NEI/NIH), mit Forschungsgeldern für M.H. Frank gefördert (RO1EY025794).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gasser.

Ethics declarations

Interessenkonflikt

M. Gasser, M. H. Frank und A. M. Waaga-Gasser geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gasser, M., Frank, M.H. & Waaga-Gasser, A.M. Stammzell-basierter biologischer Gefäßersatz. Gefässchirurgie 23, 28–33 (2018). https://doi.org/10.1007/s00772-017-0349-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00772-017-0349-5

Schlüsselwörter

Keywords

Navigation