Skip to main content

Advertisement

Log in

Pathophysiologie der chronisch-kritischen Extremitätenischämie

Pathophysiology of chronic limb ischemia

  • Leitthema
  • Published:
Gefässchirurgie Aims and scope Submit manuscript

Zusammenfassung

Die chronisch arterielle Ischämie der unteren Extremitäten stellt ein alltägliches Problem in gefäßchirurgischen Kliniken dar. In Deutschland sind etwa 3 % aller Hospitalisierungen auf eine periphere arterielle Verschlusskrankheit (PAVK) zurückzuführen, wobei vor allem die kritischen Ischämien stark zunehmen. Die Folgen der chronischen Ischämie reichen von eingeschränkter Gehstrecke bis hin zum Verlust der Extremität. Am Anfang stehen Stressfaktoren wie Hyperlipidämie (LDL), freie Radikale, arterielle Hypertonie, Infektionen oder subklinische Entzündungen, die die Endothelhomöostase stören. Es kommt zu einer Dysfunktion des Endothels mit erhöhter Durchlässigkeit. Zellen des Immunsystems werden angelockt und wandern in die Gefäßwand ein, wo sie zum Abbau von Matrixkomponenten und zur Destabilisierung des Plaques führen. Durch Änderung des Phänotyps von glatten Muskelzellen und Makrophagen entstehen osteoklastenähnliche Zellen, die zu Verhärtungen in der Gefäßwand führen. Ab einer Gefäßwandstärke von etwa 100 μm wird durch den Sauerstoffmangel Hypoxie induzierter Faktor (HIF-1α) verstärkt exprimiert, was zu einem Anstieg an Wachstumsfaktoren wie VEGF („vascular endothelial growth factor“) führt. Dadurch wird die Angiogenese als Kapillarenbildner gefördert, reicht aber nicht aus, um eine stenosierte Arterie zu kompensieren. Arteriogenese bezeichnet das Wachstum von bereits vorhandenen Kollateralgefäßen. Die treibenden Kräfte sind der Druckgradient vor und hinter der Stenose sowie die Scherkräfte, die auf die Gefäßwände einwirken. Bei voranschreitender Stenosierung können die Kompensationsfähigkeiten überfordert werden und es kommt zu einer manifesten Hypoxie im Gewebe mit Rückbildung der gewonnenen Gefäßstrukturen/Kollateralkreisläufen und Gewebsatrophie.

Abstract

Chronic ischemia of the lower extremities is an everyday problem in vascular surgery clinics. In Germany, approximately 3% of all hospitalizations are due to peripheral artery disease (PAD), with critical limb ischemia (CLI) in particular showing a rapid increase. The consequences of chronic undersupply range from reduced walking distance to loss of limbs. At the beginning there are stress factors, such as hyperlipidemia (LDL), free radicals, arterial hypertension, infections or subclinical inflammation that interfere with endothelial homeostasis and cause endothelial dysfunction with increased permeability. Cells of the immune system are attracted and migrate into the vascular wall, where they lead to the degradation of matrix components and destabilization of the plaque. By changing the phenotype of smooth muscle cells and macrophages towards osteoclast-like cells, bone-like hardening of the vessel wall takes place. Above a vessel wall thickness of approximately 100 µm, hypoxia-induced factor (HIF-1α) is intensified by the lack of oxygen, which leads to an increase in growth factors, such as vascular endothelial growth factor (VEGF). This promotes angiogenesis, but it is not sufficient to compensate for a stenosed artery. Arteriogenesis refers to the growth of existing collateral vessels. The driving forces are the pressure gradient before and after the stenosis and the shear forces acting on the vessel walls. In the case of progressive stenosis, the compensatory capacities can be overtaxed and a manifest hypoxia in the tissue with regression of the obtained vascular structures and tissue atrophy occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Badimon L (2012) Interleukin-18: a potent pro-inflammatory cytokine in atherosclerosis. Cardiovasc Res 96:172–175 (discussion 6–80)

    Article  CAS  PubMed  Google Scholar 

  2. Badimon L, Vilahur G (2014) Thrombosis formation on atherosclerotic lesions and plaque rupture. J Intern Med 276:618–632

    Article  CAS  PubMed  Google Scholar 

  3. Burke AP, Farb A, Malcom GT, Liang Y, Smialek JE, Virmani R (1999) Plaque rupture and sudden death related to exertion in men with coronary artery disease. JAMA 281:921–926

    Article  CAS  PubMed  Google Scholar 

  4. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Coats P, Jarajapu YPR, Hillier C, McGrath JC, Daly C (2003) The use of fluorescent nuclear dyes and laser scanning confocal microscopy to study the cellular aspects of arterial remodelling in critical limb ischaemia. Exp Physiol 88:547–554

    Article  CAS  PubMed  Google Scholar 

  6. Coats P, Wadsworth R (2005) Marriage of resistance and conduit arteries breeds critical limb ischemia. Am J Physiol Heart Circ Physiol 288:H1044–H1050

    Article  CAS  PubMed  Google Scholar 

  7. Darius H, Trampisch H, Pittrow D, Allenberg JR, Haberl RL, Mahn M, Tepohl HG, Burhaus I, Diehm C (2008) Vergleich zweier Koronaräquivalente: Risikoerhöhung unter Diabetes mellitus und Peripherer Arterieller Verschlusskrankheit. Dtsch Med Wochenschr 133(45):2317–2322

    Article  CAS  PubMed  Google Scholar 

  8. Dragneva G, Korpisalo P, Yla-Herttuala S (2013) Promoting blood vessel growth in ischemic diseases: challenges in translating preclinical potential into clinical success. Dis Model Mech 6:312–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fowkes FG, Rudan D, Rudan I, Aboyans V, Denenberg J, McDermott M, Norman P, Sampson U, Williams L, Mensah G, Criqui M (2013) Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet 382:1329–1340

    Article  PubMed  Google Scholar 

  10. Freynhofer MK, Bruno V, Wojta J, Huber K (2012) The role of platelets in athero-thrombotic events. Curr Pharm Des 18:5197–5214

    Article  CAS  PubMed  Google Scholar 

  11. Fujita Y, Kawamoto A (2017) Stem cell-based peripheral vascular regeneration. Adv Drug Deliv Rev 17:30182–30185

    Google Scholar 

  12. Heller G, Günster C, Schellschmidt H (2004) Wie häufig sind Diabetes-bedingte Amputationen unterer Extremitäten in Deutschland? Eine Analyse auf Basis von Routinedaten. Dtsch Med Wochenschr 129(9):429–433

    Article  CAS  PubMed  Google Scholar 

  13. Johnson JL (2014) Emerging regulators of vascular smoothmuscle cell function in the development and progression of atherosclerosis. Cardiovasc Res 103:425–460

    Article  Google Scholar 

  14. Koga J, Aikawa M (2013) Crosstalk between macrophages and smooth muscle cells in atherosclerotic vascular diseases. Vascul Pharmacol 57:24–28

    Article  Google Scholar 

  15. Kroger K, Stang A, Kondratieva J, Moebus S, Beck E, Schmermund A, Möhlenkamp S, Dragano N, Siegrist J, Jöckel KH, Erbel R (2006) Prevalence of peripheral arterial disease – results of the Heinz Nixdorf recall study. Eur J Epidemiol 21:279–285

    Article  PubMed  Google Scholar 

  16. Malyar N, Furstenberg T, Wellmann J, Meyborg M, Lüders F, Gebauer K, Bunzemeier H, Roeder N, Reinecke H (2013) Recent trends in morbidity and in-hospital outcomes of in-patients with peripheral arterial disease: a nationwide population-based analysis. Eur Heart J 34:2706–2714

    Article  PubMed  Google Scholar 

  17. Mehta D, Malik AB (2006) Signaling mechanisms regulating endothelial permeability. Physiol Rev 86:279–367

    Article  CAS  PubMed  Google Scholar 

  18. Meijer WT, Grobbee DE, Hunink MG, Hofman A, Hoes AW (2000) Determinants of peripheral arterial disease in the elderly: The Rotterdam Study. Arch Intern Med 160(19):2934–2938

    Article  CAS  PubMed  Google Scholar 

  19. Michaelis UR (2014) Mechanisms of endothelial cell migration. Cell Mol Life Sci 71:4131–4148

    Article  CAS  PubMed  Google Scholar 

  20. Moreno PR, Purushothaman M, Purushothaman KR (2012) Plaque neovascularization: defense mechanisms, betrayal, or a war in progress. Ann N Y Acad Sci 1254:7–17

    Article  CAS  PubMed  Google Scholar 

  21. Sage A, Tintut Y, Demer L (2010) Regulatory mechanisms in vascular calcification. Nat Rev Cardiol 7:528–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Seneviratne A, Hulsmans M, Holvoet P, Monaco C (2013) Biomechanical factors and macrophages in plaque stability. Cardiovasc Res 99:284–293

    Article  CAS  PubMed  Google Scholar 

  23. Schaper W, DeBrabander M, Lewi P (1971) DNA-synthesis and mitoses in coronary collateral vessels of the dog. Circ Res 28:671–679

    Article  CAS  PubMed  Google Scholar 

  24. Schaper W (2009) Collateral circulation: past and present. Basic Res Cardiol 104:5–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Scholz D, Ito W, Fleming I, Deindl E, Sauer A, Wienet M, Busse R, Schaper J, Schaper W (2000) Ultrastructure and molecular histology of rabbit hind-limb collateral artery growth (arteriogenesis). Virchows Arch 436:257–270

    Article  CAS  PubMed  Google Scholar 

  26. Scholz D, Cai WJ, Schaper W (2001) Arteriogenesis, a new concept of vascular adaptation in occlusive disease. Angiogenesis 4(4):247–257

    Article  CAS  PubMed  Google Scholar 

  27. Tang GL, Chang DS, Sarkar R, Wang R, Messina LM (2005) The effect of gradual or acute arterial occlusion on skeletal muscle blood flow, arteriogenesis, and inflammation in rat hindlimb ischemia. J Vasc Surg 41:312–320

    Article  PubMed  Google Scholar 

  28. Tedgui A, Mallat Z (2001) Apoptosis as a determinant of atherothrombosis. Thromb Haemost 86:420–426

    CAS  PubMed  Google Scholar 

  29. Virginio VW, Nunes VS, Moura FA, Menezes FH, Andreollo NA, Rogerio F, Scherrer DZ, Quintao EC, Nakandakare E, Petrucci O (2015) Arterial tissue and plasma concentration of enzymatic-driven oxysterols are associated with severe peripheral atherosclerotic disease and systemic inflammatory activity. Free Radic Res 49:199–203

    Article  CAS  PubMed  Google Scholar 

  30. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20:1262–1275

    Article  CAS  PubMed  Google Scholar 

  31. Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN, Wrenn SP, Narula J (2005) Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 25:2054–2061

    Article  CAS  PubMed  Google Scholar 

  32. Zhang MJ, Zhou Y, Chen L, Wang X, Pi Y, long CY, Sun MJ, Chen X, Gao CY, Li JC, Zhang LL (2016) Impaired SIRT1 promotes the migration of vascular smooth muscle cell-derived foam cells. Histochem Cell Biol 146:33–43

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Simon.

Ethics declarations

Interessenkonflikt

F. Simon, A. Oberhuber, N. Floros, P. Düppers, H. Schelzig und M. Duran geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simon, F., Oberhuber, A., Floros, N. et al. Pathophysiologie der chronisch-kritischen Extremitätenischämie. Gefässchirurgie 23, 6–12 (2018). https://doi.org/10.1007/s00772-017-0347-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00772-017-0347-7

Schlüsselwörter

Keywords

Navigation