Wundheilungsstörungen im Kontext – Epidemiologie und Pathophysiologie

Wound healing disorders in context – epidemiology and pathophysiology

Zusammenfassung

In Deutschland leiden derzeit zwischen 400.000 und 800.000 Menschen an einer behandlungsbedürftigen chronischen Wunde. Die überwiegende Mehrzahl basiert auf vaskulärer Genese. Dies erfordert vom Gefäßchirurgen zur Behandlung neben Revaskularisationsmaßnahmen auch Kenntnisse zur Wundbehandlung und Pathophysiologie. In einem Übersichtsartikel werden die komplexen physiologischen Wundheilungsmechanismen den vaskulär bedingten Pathomechanismen gegenübergestellt sowie Faktoren eruiert, die zu einer Chronifizierung der Wunde führen.

In der Inflammationsphase nach Verletzung des Hautinteguments wird die Gerinnungskaskade initiiert, die zur Aktivierung von Thrombozyten führt. Thrombozyten sezernieren Wachstumsfaktoren. Makrophagen und Granulozyten sorgen für eine Beseitigung des Zelldetritus und wehren Mikroorganismen ab. Proteasen unterstützen das Débridement. Zytokine und Monozyten stimulieren die Angiogenese und fördern die Fibroblastenproliferation. In dieser Proliferationsphase generiert sich das zur Wundheilung erforderliche Granulationsgewebe. In der letzten Phase der Wundheilung (Reparationsphase) kommt es zur Reepithelialisierung der Wunde, der Keratinozytenregeneration und in der Folge durch Umwandlung des Kollagens III in Kollagen I zur Ausbildung einer Narbe. Störfaktoren der Wundheilung sind neben einer unbehandelten Grunderkrankung Wundinfektionen, bestehende Hypoxie, Nekrosen, unbehandelte metabolische Störungen, aber auch mangelnde Nährstoffe. Topisch angewandte autologe Stammzellen bieten Ansätze, den Regenerationsprozess auf zellulärer Ebene positiv zu beeinflussen.

Abstract

In Germany, between 400,000 and 800,000 people currently suffer from a chronic wound requiring treatment. The majority are based on a vascular genesis. In addition to revascularization, knowledge of the wound treatment as well as the pathophysiology are necessry for a vascular surgeon. In a review article the complex physiological wound healing mechanisms of the vascular-linked pathomechanisms are discussed as well as factors which lead to chronification of wounds. In the inflammation phase after injury to the skin integument, the coagulation cascade is initiated and thrombocytes are activated. Thrombocytes secreting growth factors, macrophages and granulocytes ensure elimination of the cell detritus and repel microorganisms. Proteases support debridement and cytokines and monocytes stimulate angiogenesis and promote fibroblast proliferation. In this proliferative phase, the granulation tissue required for wound healing is generated. The last phase of wound healing (reparation phase) involves re-epithelialization of the wound, keratinocyte regeneration and as a result, the transformation of collagen III into collagen I for formation of scar tissue. In addition to an untreated primary disease, disturbing factors of wound healing are wound infections, the presence of hypoxia, necrosis, untreated metabolic disturbances and also nutrient deficiency. Topically applied autologous stem cells provide approaches to positively influence the regeneration process at the cellular level.

This is a preview of subscription content, log in to check access.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. 1.

    Heyer K, Augustin M (2014) Barmer GEK Heil- und Hilfsmittelreport 2014. http://presse.barmer-gek.de/barmer/web/Portale/Presseportal/Subportal/Presseinformationen/Archiv/2014/140916-Heil-und-Hilfsmittelreport/PDF-Heil-und-Hilfsmittelreport-2014,property=Dat. Zugegriffen: 01.07.2017

    Google Scholar 

  2. 2.

    Sterry W (2011) Kurzlehrbuch Dermatologie, 1. Aufl. Thieme, Stuttgart

    Google Scholar 

  3. 3.

    Herrmann K, Trinkheller U (2015) Dermatologie und medizinische Kosmetik, 3. Aufl. Springer, Berlin

    Google Scholar 

  4. 4.

    Sterry W, Burgdorf W, Paus R (2010) Checkliste Dermatologie, 6. Aufl. Thieme, Stuttgart

    Google Scholar 

  5. 5.

    Candi E, Schmidt R, Melino G (2005) The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol 6(4):328–340

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Tansey EA, Johnson CD (2015) Recent advances in thermoregulation. Adv Physiol Educ 39(3):139–148

    Article  PubMed  Google Scholar 

  7. 7.

    Nejati R, Kovacic D, Slominksi A (2013) Neuro-immune-endocrine functions of the skin: an overview. Expert Rev Dermatol 8(6):581–583

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Zmijewski MA, Slominiski A (2011) Neuroendocrinology of the skin: an overview and selective analysis. Dermatoendocrinol 3(1):3–10

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Martin P (1997) Wound healing—aiming for perfect skin regeneration. Science 276(5309):75–81

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Broughton G, Janis JE, Attinger CE (2006) The basic science of wound healing. Plast Reconstr Surg 117(Suppl. 7):12S–34S

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Sinno H, Prakash S (2013) Complements and the wound healing cascade: an updated review. Plast Surg Int 2013:1–7. https://doi.org/10.1155/2013/146764 (Article ID: 146764)

    Google Scholar 

  12. 12.

    Smola H et al (2001) Wundheilung und Wundheilungsstörungen. Dtsch Arztebl 98(43):A2802–A2809

    Google Scholar 

  13. 13.

    Falanga V (2005) Wound healing and its impairment in the diabetic foot. Lancet 366(9498):1736–1743

    Article  PubMed  Google Scholar 

  14. 14.

    Barrientos S, Stojadinovic O, Golinko MS et al (2008) Growth factors and cytokines in wound healing. Wound Repair Regen 16(5):585–601

    Article  PubMed  Google Scholar 

  15. 15.

    Martin P, Nunan R (2015) Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br J Dermatol 173(2):370–378

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Pastar I, Stojadinovic O, Yin NC et al (2014) Epithelialization in wound healing: a comprehensive review. Adv Wound Care (New Rochelle) 3(7):445–464

    Article  Google Scholar 

  17. 17.

    Werner S, Krieg T, Smola H (2007) Keratinocyte-fibroblast interactions in wound healing. J Invest Dermatol 127(5):998–1008

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Tonnesen MG, Feng X, Clark R (2000) Angiogenesis in wound healing. J Investig Dermatol Symp Proc 5(1):40–46

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Newman AC, Nakatsu MN, Chou W et al (2011) The requirement for fibroblasts in angiogenesis: fibroblast-derived matrix proteins are essential for endothelial cell lumen formation. Mol Biol Cell 22(20):3791–3800

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Weis SM, Cheresh DA (2011) Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 17(11):1359–1370

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Gurtner GC, Werner S, Barrandon Y, Longaker M (2008) Wound repair and regeneration. Nature 453(7193):314–321

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Perollet C, Han ZC, Savona C et al (1998) Platelet factor 4 modulates fibroblast growth factor 2 (FGF-2) activity and inhibits FGF-2 dimerization. Blood 91(9):3289–3299

    CAS  PubMed  Google Scholar 

  23. 23.

    Henry G, Garner WL (2003) Inflammatory mediators in wound healing. Surg Clin North Am 83(3):483–507

    Article  PubMed  Google Scholar 

  24. 24.

    S3-Leitlinie 091-001 „Lokaltherapie chronischer Wunden bei den Risiken CVI, PAVK und Diabetes mellitus“. http://www.awmf.org. Zugegriffen: 11.06.2017

  25. 25.

    Velnar T, Bailey T, Smrkolj V (2009) The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res 37(5):1528–1542

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Grice EA, Segre J (2012) Interaction of microbiome and the innate immune response in chronic wounds. Adv Exp Med Biol 946:55–68

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Kavalukas SL, Barbul A (2011) Nutrition and wound healing: an update. Plast Reconstr Surg 127(Suppl 1):38S–43S

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Tsourdi E, Barthel A, Rietzsch H et al (2013) Current aspects in the pathophysiology and treatment of chronic wounds in diabetes mellitus. Biomed Res Int 2013: 385641. https://doi.org/10.1155/2013/385641

  29. 29.

    Alavi A, Sibbald RG, Mayer D et al (2014) Diabetic foot ulcers: part I. Pathophysiology and prevention. J Am Acad Dermatol 70(1):1.e1–1.e18

    Article  Google Scholar 

  30. 30.

    Noor S, Zubair M, Ahmad J (2015) Diabetic foot ulcer—a review on pathophysiology, classification and microbial etiology. Diabetes Metab Syndr 9(3):192–199

    Article  PubMed  Google Scholar 

  31. 31.

    Muller MD, Reed AB, Leuenberger UA et al (2013) Physiology in medicine: peripheral arterial disease. J Appl Physiol 115(9):1219–1226

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Sakakura K, Nakano M, Otsuka F et al (2013) Pathophysiology of atherosclerosis plaque progression. Heart Lung Circ 22(6):399–411

    Article  PubMed  Google Scholar 

  33. 33.

    Eraso LH, Fukaya E, Mohler ER et al (2014) Peripheral arterial disease, prevalence and cumulative risk factor profile analysis. Eur J Prev Cardiol 21(6):704–711

    Article  PubMed  Google Scholar 

  34. 34.

    Lu L, Mackay DF, Pell JP (2014) Meta-analysis of the association between cigarette smoking and peripheral arterial disease. Heart 100(5):414–423

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Wittens C, Davies AH, Bækgaard N et al (2015) Editor’s choice – management of chronic venous disease: clinical practice guidelines of the European Society for Vascular Surgery (ESVS). Eur J Vasc Endovasc Surg 49(6):678–737

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Eberhardt RT, Raffetto JD (2014) Chronic venous insufficiency. Circulation 130(4):333–346

    Article  PubMed  Google Scholar 

  37. 37.

    Comerota A, Lurie F (2015) Pathogenesis of venous ulcer. Semin Vasc Surg 28(1):6–14

    Article  PubMed  Google Scholar 

  38. 38.

    Rafetto JD (2013) Inflammation in chronic venous ulcers. Phlebology 28(Suppl 1):61–67

    Article  Google Scholar 

  39. 39.

    Botuun R (2013) Effects of immunosuppressive therapy on wound healing. Int Wound J 10(1):98–104

    Article  Google Scholar 

  40. 40.

    Payne WG, Naidu DK, Wheeler CK et al (2008) Wound healing in patients with cancer. Eplasty 8:e9

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Moore ZE, Cowman S (2015) Repositioning for treating pressure ulcers. Cochrane Database Syst Rev 1. https://doi.org/10.1002/14651858.cd006898.pub4 (Article ID: CD006898)

    Google Scholar 

  42. 42.

    Frykberg RG, Banks J (2015) Challenges in treatment of chronic wounds. Adv Wound Care (New Rochelle) 4(9):560–582

    Article  Google Scholar 

  43. 43.

    Picard F, Hersant B, Bosc R et al (2015) The growing evidence for the use of platelet-rich plasma on diabetic chronic wounds: a review and a proposal for a new standard care. Wound Repair Regen 23(5):638–643

    Article  PubMed  Google Scholar 

  44. 44.

    Li M, Zhao Y, Hao H et al (2015) Mesenchymal stem cell-based therapy for nonhealing wounds: today and tomorrow. Wound Repair Regen 23(4):465–482

    Article  PubMed  Google Scholar 

  45. 45.

    Amato B, Compagna R, Amato M et al (2015) The role of adult tissue-derived stem cells in chronic leg ulcers: a systematic review focused on tissue regeneration medicine. Int Wound J 13(6):1289–1298

    Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dr. H. Diener.

Ethics declarations

Interessenkonflikt

H. Diener, E. Kleinspehn, A. Larena-Avellaneda, M. Kaschwich, H. Rieß, F. Heidemann, C. Behrendt und E.S. Debus geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

H. Diener und E. Kleinspehn teilen sich die Erstautorenschaft

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Diener, H., Kleinspehn, E., Larena-Avellaneda, A. et al. Wundheilungsstörungen im Kontext – Epidemiologie und Pathophysiologie. Gefässchirurgie 22, 524–532 (2017). https://doi.org/10.1007/s00772-017-0330-3

Download citation

Schlüsselwörter

  • Reepithelialisierung
  • Granulationsgewebe
  • Vaskuläre Wunden
  • Regenerative Therapieansätze
  • Periphere arterielle Verschlusskrankheit

Keywords

  • Re-Epithelialization
  • Granulation Tissue
  • Vascular wounds
  • Regenerative treatment approaches
  • Peripheral arterial occlusive disease