Skip to main content
Log in

Nicht invasive Messungen der Gewebedurchblutung bei kritischer Extremitätenischämie

Noninvasive measurements of tissue perfusion in critical limb ischemia

  • Leitthema
  • Published:
Gefässchirurgie Aims and scope Submit manuscript

Zusammenfassung

Die kritische Extremitätenischämie stellt aufgrund nicht heilender Wunden nach wie vor eine Herausforderung an ein interdisziplinär behandelndes Team dar. Vor diesem Hintergrund ist es notwendig, suffizient Erfolgskontrollen einer Revaskularisation durchführen zu können. Neben der Beurteilung der Makrozirkulation in Form von Knöchel-Arm- und Zehen-Arm-Index-Messungen wird häufig die Relevanz der Mikrozirkulation unterschätzt. Um allerdings ein Gesamtbild der Durchblutungssituation zu erhalten, sollte diese nicht außer Acht gelassen werden. Dargestellt werden sollen daher aktuelle Methoden der nicht invasiven Perfusionsanalyse. Hierzu zählen die transkutane Sauerstoffpartialdruckmessung, das „Oxygen-to-see“-Verfahren – eine Kombination aus Weißlichtspektrometrie und Laserdopplerflowmetrie – sowie die Fluoreszenzangiographie durch Indocyaningrün. Ein Ausblick auf mögliche zukünftige Verfahren wie die multispektrale optoakustische Tomographie wird ebenso gegeben.

Abstract

Critical limb ischemia (CLI) remains a challenge for an interdisciplinary therapeutic team due to chronic nonhealing wounds. Against this background, there is a necessity of quality control after revascularization. Beside the isolated evaluation of the macrocirculation by Ankle-Brachial or Toe-Brachial Index measurements, the microcirculation as an additional important factor of wound healing often remains underestimated. The following article gives an overview about the current investigation methods for noninvasive perfusion control of the CLI patient. Therefore, transcutaneous oxygen pressure (tcpO2), the “oxygen-to-see” method which is a combination of white light tissue spectrometry and laser-Doppler flowmetry, fluorescence angiography with indocyanine green, and multispectral optoacoustic tomography will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Blevins WA Jr., Schneider PA (2010) Endovascular management of critical limb ischemia. Eur J Vasc Endovasc Surg 39(6):756–761

    Article  PubMed  Google Scholar 

  2. Khan MU et al (2009) Predictors of limb loss despite a patent endovascular-treated arterial segment. J Vasc Surg 49(6):1440–1446

    Article  PubMed  Google Scholar 

  3. Meyer A et al (2015) Results of combined vascular reconstruction and free flap transfer for limb salvage in patients with critical limb ischemia. J Vasc Surg 61(5):1239–1248

    Article  PubMed  Google Scholar 

  4. Stücker M, Memmel U, Altmeyer P (2000) Transkutane Sauerstoffpartialdruck- und Kohlendioxidpartialdruckmessung – Verfahrenstechnik und Anwendungsgebiete. Phlebologie 2000(4):11

    Google Scholar 

  5. Gothgen I, Jacobsen E (1978) Transcutaneous oxygen tension measurement II. The influence of halothane and hypotension. Acta Anaesthesiol Scand Suppl 67:71–75

    CAS  PubMed  Google Scholar 

  6. Franzeck U (Hrsg) (1991) Transkutaner Sauerstoffpartialdruck in der klinischen Mikrozirkulation: Grundlagen, Methoden, Neuentwicklungen von Kombinationssonden und Anwendung in der Angiologie. Huber, Bern

    Google Scholar 

  7. Frank KH et al (1989) The Erlangen micro-lightguide spectrophotometer EMPHO I. Phys Med Biol 34(12):1883–1900

    Article  CAS  PubMed  Google Scholar 

  8. Krug A (2006) Mikrozirkulation und Sauerstoffversorgung des Gewebes. Phlebologie 2006(6):12

    Google Scholar 

  9. Forst T et al (2008) Reliability of lightguide spectrophotometry (O2C) for the investigation of skin tissue microvascular blood flow and tissue oxygen supply in diabetic and nondiabetic subjects. J Diabetes Sci Technol 2(6):1151–1156

    Article  PubMed  PubMed Central  Google Scholar 

  10. Beckert S et al (2004) The impact of the Micro-Lightguide O2C for the quantification of tissue ischemia in diabetic foot ulcers. Diabetes Care 27(12):2863–2867

    Article  PubMed  Google Scholar 

  11. Harrison DK et al (1996) Lightguide spectrophotometry for the assessment of skin healing viability in critical limb ischaemia. Adv Exp Med Biol 388:45–51

    Article  CAS  PubMed  Google Scholar 

  12. Harrison DK et al (1995) Amputation level assessment using lightguide spectrophotometry. Prosthet Orthot Int 19(3):139–147

    CAS  PubMed  Google Scholar 

  13. Rother U et al (2017) Immediate changes of angiosome perfusion during tibial angioplasty. J Vasc Surg 65(2):422–430

    Article  PubMed  Google Scholar 

  14. Rother U et al (2015) The angiosome concept evaluated on the basis of microperfusion in critical limb ischemia patients-an oxygen to see guided study. Microcirculation 22(8):737–743

    Article  CAS  PubMed  Google Scholar 

  15. Nguyen QT, Tsien RY (2013) Fluorescence-guided surgery with live molecular navigation – a new cutting edge. Nat Rev Cancer 13(9):653–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pavlova I et al (2012) Multiphoton microscopy and microspectroscopy for diagnostics of inflammatory and neoplastic lung. J Biomed Opt 17(3):036014

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gurtner GC et al (2013) Intraoperative laser angiography using the SPY system: review of the literature and recommendations for use. Ann Surg Innov Res 7(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kuroda K et al (2013) Intra-arterial injection fluorescein videoangiography in aneurysm surgery. Neurosurgery 72(2 Suppl Operative):ons141–ons150

    PubMed  Google Scholar 

  19. Picart T et al (2017) Is fluorescence-guided surgery with 5‑ala in eloquent areas for malignant gliomas a reasonable and useful technique? Neurochirurgie. doi:10.1016/j.neuchi.2016.12.005

    PubMed  Google Scholar 

  20. Alander JT et al (2012) A review of indocyanine green fluorescent imaging in surgery. Int J Biomed Imaging 2012:940585

    Article  PubMed  PubMed Central  Google Scholar 

  21. Detter C et al (2007) Fluorescent cardiac imaging: a novel intraoperative method for quantitative assessment of myocardial perfusion during graded coronary artery stenosis. Circulation 116(9):1007–1014

    Article  PubMed  Google Scholar 

  22. Leevy CM et al (1962) Estimation of hepatic blood flow with indocyanine green. J Clin Invest 41:1169–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Flower RW (1973) Injection technique for indocyanine green and sodium fluorescein dye angiography of the eye. Invest Ophthalmol 12(12):881–895

    CAS  PubMed  Google Scholar 

  24. Ludolph I et al (2016) Cracking the perfusion code?: Laser-assisted Indocyanine Green angiography and combined laser Doppler spectrophotometry for intraoperative evaluation of tissue perfusion in autologous breast reconstruction with DIEP or ms-TRAM flaps. J Plast Reconstr Aesthet Surg 69(10):1382–1388

    Article  PubMed  Google Scholar 

  25. Lee BT et al (2010) Intraoperative near-infrared fluorescence imaging in perforator flap reconstruction: current research and early clinical experience. J Reconstr Microsurg 26(1):59–65

    Article  PubMed  Google Scholar 

  26. Rother U et al (2016) Microcirculation evaluated by intraoperative fluorescence angiography after tibial bypass surgery. Ann Vasc Surg 40:190–197

    Article  PubMed  Google Scholar 

  27. Colvard B et al (2016) SPY technology as an adjunctive measure for lower extremity perfusion. J Vasc Surg 64(1):195–201

    Article  PubMed  Google Scholar 

  28. Braun JD et al (2013) Early quantitative evaluation of indocyanine green angiography in patients with critical limb ischemia. J Vasc Surg 57(5):1213–1218

    Article  PubMed  Google Scholar 

  29. Ris F et al (2014) Near-infrared (NIR) perfusion angiography in minimally invasive colorectal surgery. Surg Endosc 28(7):2221–2226

    Article  PubMed  PubMed Central  Google Scholar 

  30. Diana M et al (2014) Enhanced-reality video fluorescence: a real-time assessment of intestinal viability. Ann Surg 259(4):700–707

    Article  PubMed  Google Scholar 

  31. Waldner MJ et al (2016) Multispectral optoacoustic tomography in Crohn’s disease: noninvasive imaging of disease activity. Gastroenterology 151(2):238–240

    Article  PubMed  Google Scholar 

  32. Ntziachristos V, Razansky D (2010) Molecular imaging by means of multispectral optoacoustic tomography (MSOT). Chem Rev 110(5):2783–2794

    Article  CAS  PubMed  Google Scholar 

  33. Taruttis A et al (2016) Optoacoustic imaging of human vasculature: feasibility by using a handheld probe. Radiology 281(1):256–263

    Article  PubMed  Google Scholar 

  34. Knieling F et al (2017) Multispectral optoacoustic tomography for assessment of Crohn’s disease activity. N Engl J Med 376(13):1292–1294

    Article  PubMed  Google Scholar 

  35. Stoner MC et al (2016) Reporting standards of the Society for Vascular Surgery for endovascular treatment of chronic lower extremity peripheral artery disease: Executive summary. J Vasc Surg 64(1):227–228

    Article  PubMed  Google Scholar 

  36. Mills JL Sr. et al (2014) The Society for Vascular Surgery Lower Extremity Threatened Limb Classification System: risk stratification based on wound, ischemia, and foot infection (WIfI). J Vasc Surg 59(1):220–234.e1-2

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Rother.

Ethics declarations

Interessenkonflikt

U. Rother und W. Lang geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rother, U., Lang, W. Nicht invasive Messungen der Gewebedurchblutung bei kritischer Extremitätenischämie. Gefässchirurgie 22, 358–362 (2017). https://doi.org/10.1007/s00772-017-0292-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00772-017-0292-5

Schlüsselwörter

Keywords

Navigation