Skip to main content

Advertisement

Log in

Ultraschalldiagnostik von Nierenarterienstenosen

Stenosekriterien, CEUS, In-Stent-Rezidivstenose

Ultrasound diagnostics of renal artery stenosis

Stenosis criteria, CEUS and recurrent in-stent stenosis

  • Leitthema
  • Published:
Gefässchirurgie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund und Fragestellung

Als nicht invasive, nebenwirkungsfreie und kostengünstige Methode ist die Sonographie für die Diagnostik der Nierenarterienstenose die Methode der Wahl. Insgesamt vier verschiedene Methoden, zwei direkte (peak systolic velocity = PSV, renal aortic ratio = RAR) und zwei indirekte Kriterien (resistance index = RI, Akzelerationszeit) zur Messung relevanter Nierenarterienstenosen werden beschrieben, jeweils mit sehr unterschiedlichen Treffsicherheiten in verschiedenen Studien. Weiterhin wird kontrovers diskutiert, ab welchem Grad die Stenose therapierelevant ist und welche sonographische Grenzgeschwindigkeit (PSV) in der Graduierung diagnostisch relevant ist.

Methode

Kritisches Review basierend auf einer selektiven Literaturrecherche zu Messmethodik und Validität der Sonographie bei Nierenarterienstenose. Kritische Methodenevaluation und Darstellung von Messprinzipien zur möglichst exakten Messung verglichen mit dem Goldstandard Angiographie sowie Bewertung des Stellenwerts von CT-Angiographie und MR-Angiograpie.

Ergebnisse und Schlussfolgerungen

Die PSV bietet als direkte Messmethode in der Stenosedetektion und Graduierung die höchste Sensitivität und Spezifität. Die meisten Studien ermitteln in ROC-Kurven bei einer PSV > 180–200 cm/s Sensitivitäten und Spezifitäten von 85–90 % für > 50 %igen Stenosen. Andere Methoden wie der Quotient aus PSV in Aorta und Nierenarterie (RAR) oder indirekte Kriterien wie der Widerstandsindex im Seitenvergleich (dRI) oder die Akzelerationszeit können ergänzend zu Verbesserung der Treffsicherheit herangezogen werden. Die Kontrastmittelsonographie (CEUS) verbessert durch die Echokontrastverstärkung die Treffsicherheit.

Früher wurden erst höhergradige Stenosen als therapierelevant angesehen, andererseits wird inzwischen schon der Druckabfall von > 20 mmHg bei > 50 %igen Stenosen (PSV 180 cm/s) als relevant für einen Reninanstieg bewertet. Stenosen bei fibromuskulären Dysplasien können sonographisch nach dem Kontinuitätsgesetz zuverlässig graduiert werden. Die Studienlage in der Graduierung von In-Stent-Rezidivstenosen ist kontrovers, tendenziell höhere Cut-off-Werte für PSV und RAR sind jedoch anzunehmen. MRA und CTA zeigen zwar Treffsicherheiten von > 90 %, jedoch mit möglichen Nebenwirkungen für Patienten, insbesondere bei vorbestehendem Nierenparenchymschaden.

Abstract

Background and objectives

Sonography is a non-invasive and economic method with no side effects and is the method of choice for the diagnostics of renal artery stenosis. A total of four different methods, including two direct criteria, i.e. peak systolic velocity (PSV) and renal aortic ratio (RAR) and two indirect criteria, i.e. resistance index (RI) and acceleration time for measurement of relevant renal artery stenoses are described, each with very different accuracies in various studies. Furthermore, it is controversially discussed what grade of stenosis is therapy relevant and which sonographic PSV is diagnostically relevant in grading.

Methods

This article presents a critical review based on a selective literature search of measurement methods and validity of sonography for renal artery stenosis. A critical evaluation of the methods and presentation of the measurement principles for an exact as possible measurement compared to the gold standard of angiography is followed by an assessment of the importance of computed tomography angiography (CTA) and magnetic resonance angiography (MRA).

Results and conclusion

As a direct measurement method PSV provides the highest sensitivity and specificity in the detection and grading of stenoses. Most studies reported a sensitivity and specificity of 85–90 % for > 50 % stenoses in receiver operating characteristic (ROC) curves with a PSV > 180–200 cm/s. Other methods, such as the ratio of PSV in RAR or indirect criteria, such as RI in a side to side comparison (dRI) and acceleration time can be used as additional methods to improve the accuracy. Contrast-enhanced ultrasound (CEUS) improves the accuracy due to echo contrast enhancement. Previously, only higher grade stenoses were considered to be therapy relevant but now even a drop in pressure of > 20 mmHg for > 50 % stenoses (PSV 180 cm/s) is considered to be relevant for an increase in renin. Stenoses in fibromuscular dysplasia can be reliably graded sonographically according to the law of continuity. The study situation in grading of recurrent in-stent stenoses is controversial; however, tendentially higher cut-off values for PSV and RAR are assumed. Both MRA and CTA have an accuracy > 90 % but with possible side effects for patients especially with pre-existing renal parenchymal damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8

Literatur

  1. Abu Rahma AF, Srivastava M, Mousa AY (2012) Critical analysis of renal duplex ultrasound parameters in detecting significant renal artery stenosis. J Vasc Surg 56:1052–1060

    Article  Google Scholar 

  2. Avasthi PS, Voyles WF, Greene ER (1984) Noninvasive diagnosis of renal artery stenosis by echo-Doppler velocimetry. Kidney Int 25:824–829

    Article  CAS  PubMed  Google Scholar 

  3. Bakker J, Beek FJ, Beutler JJ (1998) Renal artery stenosis and accessory renal arteries: accuracy of detection and visualization with gadolinium-enhanced breath-hold MR angiography. Radiology 207:497–504

    Article  CAS  PubMed  Google Scholar 

  4. Beregi JP, Louvegny S, Ceugnart L (1997) Helical x-ray computed tomography of renal arteries. Apropos of 300 patients. J Radiol 78:549–556

    CAS  PubMed  Google Scholar 

  5. Chi YW, White CJ, Thornton S, Milani RV (2009) Ultrasound velocity criteria for renal in-stent restenosis. J Vasc Surg 50:119–123

    Article  PubMed  Google Scholar 

  6. Ciccone MM, Cortese F, Fiorella A, Scicchitano P, Cito F, Quistelli G, Pertosa G, D’Agostino R, Guida P, Favale S (2011) The clinical role of contrast-enhanced ultrasound in the evaluation of renal artery stenosis and diagnostic superiority as compared to traditional echo-color-Doppler flow imaging. Int Angiol 30:135–139

    CAS  PubMed  Google Scholar 

  7. Claudon M, Plouin PF, Baxter GM, Rohban T, Devos DM (2002) Renal arteries in patients at risk of renal arterial stenosis: multicenter evaluation of the echo-enhancer SH U 508A at color and spectral Doppler US. Levovist Renal Artery Stenosis Study Group. Radiology 214:739–746

    Article  Google Scholar 

  8. Conkbayir I, Yucesoy C, Edguer T (2003) Doppler sonography in renal artery stenosis. An evaluation of intrarenal and extrarenal imaging parameters. Clin Imaging 27:256–260

    Article  PubMed  Google Scholar 

  9. De Bruyne B, Manoharan G, Pijls NH (2006) Assessment of renal stenosis severity by pressure gradient measurements. J Am CollCardiol 48:1851–1855

    Article  Google Scholar 

  10. Derkx FH, Schalekamp MA (1994) Renal arterystenosisandhypertension. Lancet 344:237–239

    Article  CAS  PubMed  Google Scholar 

  11. Fleming SH, Ross PD, Timothy EC (2010) Accuracy of duplex sonography scans after renal artery stenting. J Vasc Surg 52:953–958

    Article  PubMed  Google Scholar 

  12. Garovic VD, Textor SC (2005) Renovascular hypertension and ischemic nephropathy. Circulation 112:1362–1374

    Article  PubMed  Google Scholar 

  13. Glifeather M, Yoon HC, Siegelman ES (1999) Renal artery stenosis: evaluation with conventional angiography versus gadolinium-enhanced MR angiography. Radiology 210:367–372

    Article  Google Scholar 

  14. Guo Z, Fenster A (1996) Three-dimensional power Doppler imaging: a phantom study to quantify vessel stenosis. Ultrasound Med Biol 22:1059–1069

    Article  CAS  PubMed  Google Scholar 

  15. Hansen KJ, Tribble RW, Reavis SW (1990) Renal duplex sonography: evaluation of clinical utility. J VascSurg 12:227–236

    CAS  Google Scholar 

  16. Hawkins PG, McKnoulty LM, Gordon RD (1989) Noninvasive renal artery duplex ultrasound and computerized nuclear renography to screen for and follow progress in renal artery stenosis. J Hypertens Suppl 7:184–185

    Article  Google Scholar 

  17. Hirsch AT, Haskal ZJ, Hertzer NR (2006) ACC/AHA 2005 partice guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery. Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease). Circulation 113:e463–e654

    Article  PubMed  Google Scholar 

  18. Karasch T, Strauss AL, Grün B, Worringer M, Neuerburg-Heusler D, Roth FJ, Rieger H (1993) Farbkodierte Duplexsonographie in der Diagnostik von Nierenarterienstenosen. Dtsch Med Wochschr 118:1429–1436

    Article  CAS  Google Scholar 

  19. Kim TS, Chung JW, Park JH (1998) Renal artery evaluation: comparison of spiral CT angiographyto intra-arterial DSA. J VascInterv Radiol 9:553–559

    Article  CAS  Google Scholar 

  20. Kohler TR, Zierler RE, Martin RL (1986) Noninvasive diagnosis of renal artery stenosis by ultrasonic duplex scanning. J Vasc Surg 4:450–456

    Article  CAS  PubMed  Google Scholar 

  21. Krinsky G, Rofsky N, Giangola G (1996) Gadolinium-enhanced three-dimensional MR angiography of acquired arch vessel disease. AJR Am J Roentgenol 167:981–987

    Article  CAS  PubMed  Google Scholar 

  22. Krumme B, Blum U, Schwertfeger E (1996) Diagnosis of renovascular disease by intra- and extrarenal Doppler scanning. Kidney Int 50:1288–1292

    Article  CAS  PubMed  Google Scholar 

  23. Leiner T, de Haan MW, Nelemans PJ (2005) Contemporary imaging techniques for the diagnosis of renal artery stenosis. Eur Radiol 15:2219–2229

    Article  CAS  PubMed  Google Scholar 

  24. May AG, Deweese JA, ROB CG (1963) Hemodynamic effects of arterial stenosis. Surgery 53:513–524

    CAS  PubMed  Google Scholar 

  25. Missouris CG, Allen CM, Balen FG, Buckham T, Lees WR, MacGregor GA (1996) Non-invasiv screening for renal artery stenosis with ultrasound contrast enhancement. J Hypertense 14:519–524

    CAS  Google Scholar 

  26. Motew SJ, Cherr GS, Craven TE (2000) Renal duplex sonography: main renal artery versus hilaranaylsis. J Vasc Surg 32:462–471

    Article  CAS  PubMed  Google Scholar 

  27. Muster BR, Williams DM, Prince MR (1998) In vitro model of arterial stenosis: correlation of MR signal dephasing and trans-stenotic pressure gradients. Magn Reson Imaging 16:301–310

    Article  Google Scholar 

  28. Napoli V, Pinto S, Bargellini I, Vignali C, cioni R, Petruzzi P (2002) Duplex ultrasonographic study of the renal arteries before and after renal artery stenting. Eur Radiol 12:796–803

    Article  CAS  PubMed  Google Scholar 

  29. Nolan BW, Schermerhorn ML, Powell RJ, Rowell E (2005) Restenosis in gold-coated renal artery stents. J Vasc Surg 42:40–46

    Article  PubMed  Google Scholar 

  30. Olin JW (2002) Atherosclerotic renal artery disease. Cardiol Clin 20:547–562

    Article  PubMed  Google Scholar 

  31. Olin JW, Piedmonte MR, Young JR (1995) The utility of duplex ultrasound scanning of renal arteries for diagnosing significant renal artery stenosis. Ann Intern Med 122:833–838

    Article  CAS  PubMed  Google Scholar 

  32. Radermacher J, Chavan A, Schäffer J (2000) Detection of significant renal artery stenosis with color Doppler sonography: combining extrarenal and intrarenal approaches to minimize technical failure. Clin Nephrol 53:333–343

    CAS  PubMed  Google Scholar 

  33. Ripolles T, Aliaga R, Morote V (2001) Utility of intrarenal Doppler ultrasound in the diagnosis of renal artery stenosis. Eur J Radiol 40:54–63

    Article  CAS  PubMed  Google Scholar 

  34. Rocha-Singh K, Jaff MR, Lynne Kelly E (2008) RENAISSANCE Trial Investigators. renal artery stenting with noninvasive duplex ultrasound follow-up: 3-year results from the RENAISSANCE renal stent trial. Catheter Cardiovasc Interv 72:853–862

    Article  PubMed  Google Scholar 

  35. Rountas C, Vlychou M, Vassiou K (2007) Imaging modalities for renal artery stenosis in suspected renovascular hypertension: prospective intraindividual comparison of color Doppler US, CT angiography, GD-enhanced MR angiography and digital subtraction angiography. Ren Fall 29:295–302

    Article  CAS  Google Scholar 

  36. Safian RD, Textor SC (2001) Renal-artery Stenosis. N Engl J Med 344:431–442

    Article  CAS  PubMed  Google Scholar 

  37. Schäberle W (2009) Ultraschall in der Gefäßdiagnostik, 3. Aufl. Springer, Heidelberg, S 338, 402–409, 450–455

    Google Scholar 

  38. Schäberle W, Strauss A, Neuerburg-Heusler D, Roth FJ (1992) Wertigkeit der Duplexsonographie in der Diagnostik der Nierenarterienstenose und ihre Eignung in der Verlaufskontrolle nach Angioplastie (PTA). Ultraschall Med 13:271–276

    Article  PubMed  Google Scholar 

  39. Shetty AN, Bis KG, Kirsch M (2000) Contrast-enhanced breath-hold three-dimensional magnetic resonance angiography in the evaluation of renal arteries: optimization of technique and pitfalls. J Magn Reson Imaging 12:912–923

    Article  CAS  PubMed  Google Scholar 

  40. Solar M, Zizka J, Krajina A, Michl A, Raupach J, Kizo L, Ryska P, Ceral J (2011) Comparison of duplex ultrasonography and magnetic resonance imaging in the detection of significant renal artery stenosis. Acta Medica 54(1):9–12

    PubMed  Google Scholar 

  41. Souza de Oliveira IR Widmann A Molnar LJ (2000) Colour Doppler ultrasound: a new indes improves the diagnosis of renal artery stenosis. Ultrasound Med Biol 26:41–47

    Article  CAS  PubMed  Google Scholar 

  42. Staub D, Canevascini R, Huegli RW, Aschwanden M, Thalhammer C, Imfeld S, Singer E, Jacob AL, Jaeger KA (2007) Best duplex-sonographic criteria for the assessment of renal artery stenosis – correlation with intra-arterial pressure gradient. Ultraschall Med 28:45–51

    Article  CAS  PubMed  Google Scholar 

  43. Steffens JC, Link J, Graessnerr J (1997) Contrast-enhanced, K-space-centered, breath-hold MR angiography of renal arteries and the abdominal aorta. J MagnReson Imaging 7:617–622

    Article  CAS  Google Scholar 

  44. Steinweder C, Schutzenberger W, Fellner F (2009) 64-Detector CT angiography in renal artery stent evaluation: prospective comparison with selective catheter angiography. Radiology 252:299–305

    Article  Google Scholar 

  45. Strauss AL, Roth FJ, Rieger H (1993). Noninvasive assessment of pressure gradients across iliac artery stenosis: Duplex and catheter correlative study. J Ultrasound Med 12:17–22

    CAS  PubMed  Google Scholar 

  46. Stock KF (2009) Ultraschalldiagnostik der Nierengefäße und der Transplantatniere. Radiologe 49:1040–1047

    Article  CAS  PubMed  Google Scholar 

  47. Textor SC (1994) Renovascular Hypertension. Endocrinol Metabol Clin North Am 23:235–253

    CAS  Google Scholar 

  48. Van Jaarsveld BC, Pieterman H, van Dijk LC, van Seijen AJ, Derkx FH, Man in’t Veld AJ, Schalekamp MA (1999) Inter-observer variability in the angiographic assessment of renal artery stenosis. DRASTIC study group. Dutch Renal Artery Stenosis Intervention Cooperative. J Hypertense 17(12 Pt 1):1731–1736

    Article  Google Scholar 

  49. Vasbinder GB, Nelemans PJ, Kessels AG (2001) Diagnostic tests for renal artery stenosis in patients suspected of having renovascular hypertension: a meta-analysis. Ann Intern Med 135:401–411

    Article  CAS  PubMed  Google Scholar 

  50. Vasbinder GB, Nelemans PJ, Kessels AG (2004) Renal Artery Diagnostic Imaging Study in Hypertension (RADISH) Study Group. Accuracy of computed tomographic angiography and magnetic resonance angiography for diagnosing renal artery stenosis. Ann Intern Med 141:674–682

    Article  PubMed  Google Scholar 

  51. Willoteaux S, Faivre-Pierret M, Moranne O (2006) Fibromuscular dysplasia of the main renal arteries: comparison of contrast-enhanced MR angiography with digital subtraction angiography. Radiology 241:922–929

    Article  PubMed  Google Scholar 

  52. Wittenberg G, Kenn W, Tschammler A (1999) Spiral CT angiography. Eur Radiol 9:546–551

    Article  CAS  PubMed  Google Scholar 

  53. Zeller T, Frank U, Späth M (2001) Farbduplexsonographische Darstellbarkeit von Nierenarterien und Erkennung hämodynamisch relevanter Nierenarterienstenosen. Ultraschall Med 22:116–121

    Article  CAS  PubMed  Google Scholar 

  54. Zierler RE (2001) Is duplex scanning the best screening test for renal artery stenosis? Semin Vasc Surg 14:177–185

    Article  CAS  PubMed  Google Scholar 

  55. Taylor DC Kettler MD, Monetta GL et al (1988) Duplex ultrasound in the diagnosis of renal artery: a prospective evaluation. J Vasc Surg 7: 363–769

  56. Ferretti G, Salomone A, Castagno PL (1988) Renovascular hypertension: a non-invasiv duplex scanning screening. Int. Angiol. 7:219–223

  57. Kawarada O, Yokoi Y, Yakemoto K et al (2006) The performance of renal ultrasonography for the detection of hemodynamically significant renal artery stenosis. Catheter Cardiovasc Interv 68:311–318

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Schäberle.

Ethics declarations

Interessenkonflik

W. Schäberle, L. Leyerer, W. Schierling und K. Pfister geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Appendices

Detaillierte Beschreibung der Videos

Videoclip 1

Stenose von 50–60 % im mittleren Drittel der linken Nierenarterie durch eine fibromuskuläre Dysplasie. Stenosegraduierung nach dem Kontinuitätsgesetz: PSV-Ratio mit PSV intrastenotisch/PSV prästenotisch (Nierenarterie am Abgang) = 220 cm/s/80 cm/s = 2,7.

Der Videoclip zeigt die Ableitung der intrastenotischen PSV (im mittleren Drittel der Nierenarterie) und der prästenotischen PSV (proximales Drittel der Nierenarterie). Atemverschieblichkeit der Arterie erschwert die Messung.

Videoclip 2

Hochgradige Nierenarterienrezidivstenose nach PTA und Stent mit PSV > 5 m/s. Sowohl in konventioneller Duplexsonographie (im B-Bild bessere Visualisierung des Stentverlaufs) als auch farbduplexsonographisch ist der Untersuchungsablauf dargestellt, mit dem Versuch den Stenosejet optimal zu treffen, um die maximale PSV abzuleiten und somit die Rezidivstenose adäquat zu graduieren. Die Atemverschieblichkeit der Arterie erschwert die Messung (das „sample volume“ wird atemabhängig aus dem Gefäßlumen/Stent herausbewegt). Der Stent (echoreich, Maschendrahtmuster) ragt etwas in das Aortenlumen.

Zusatzmaterial online

(AVI Video 89551 kb)

(AVI Video 81026 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schäberle, W., Leyerer, L., Schierling, W. et al. Ultraschalldiagnostik von Nierenarterienstenosen. Gefässchirurgie 20, 102–111 (2015). https://doi.org/10.1007/s00772-015-0013-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00772-015-0013-x

Schlüsselwörter

Keywords

Navigation