Skip to main content

Advertisement

Log in

Die epigenetische Substanz BIX-01294 verbessert die Differenzierung mesenchymaler Zellen aus humanem Fettgewebe in Endothelzellen

The epigenetic substance BIX-01294 improves differentiation of mesenchymal cells from human fatty tissue into endothelial cells

  • Translationale Forschung
  • Published:
Gefässchirurgie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Patienteneigene Endothellzellen zur Auskleidung von Gefäßprothesen würden die Überlebenschance der betroffenen Patienten deutlich erhöhen und die Komplikationsrate signifikant reduzieren. Entsprechende Zellen sind jedoch schwierig in ausreichender Zahl zu gewinnen. Epigenetik spielt eine essenzielle Rolle in Regulation der Genexpression und Organogenese. Folglich könnte eine gezielte epigenetische Veränderung adulter somatischer Zellen zur Verbesserung deren Differenzierungspotenzials maßgeblich beitragen. Das Ziel der vorliegenden Studie lag deshalb in der Untersuchung der epigenetischen Substanz BIX-01294 (BIX), einem Inhibitor der Histon G9a Methyltransferase, im Bezug auf die Beeinflussung der DNA-Methylierung, der Expression der Pluripotenzgene OCT4, NANOG, KLF4, und CMYC in mesenchymalen Zellen und der Steigerung deren Differenzierungsfähigkeit in endotheliale Zellen.

Methoden

Humane mesenchymale Zellen wurden aus abdominalem Fettgewebe von Patienten gewonnen, die einem chirurgischen Eingriff in der Unfallchirurgie unterzogen wurden. Anschließend wurden die Zellen für 48 h mit BIX und danach mit Endothelzellmedium für weitere 7 und 14 Tage behandelt. Globale DNA-Methylierung wurde mittels PCR und der wiederholenden DNA-Sequenz LINE1 bestimmt. Die Expressionsanalyse wurde mit SYBR-Green RT-PCR, Immunhistochemie und Immunblotting durchgeführt. Die Differenzierung in Endothelzellen wurde über die Expression der endothelialen und angiogenetischen Marker analysiert.

Ergebnisse

Nach der Behandlung der mesenchymalen Zellen mit BIX reduzierte sich die globale DNA-Methylierung signifikant auf 53 % (p = 0,008), die Expression der Pluripotenzmarker PU5F1 und NANOG erhöhte sich 2,2- und 1,5-fach (p = 0,016 und p < 0,001). Weiterhin führte die Zugabe von BIX zu den mesenchymalen Zellen zur Erhöhung deren Differenzierung in Endothelzellen, nachgewiesen durch verstärkte Expression von VCAM-1, PECAM-1, von Willebrand-Faktor, VEGFR-2, PDGF und Angiopoietin 1.

Schlussfolgerung

In der vorliegenden Studie wurde zum ersten Mal gezeigt, dass eine Behandlung von geeigneten, mesenchymalen Zellen mit epigenetischen Substanzen, wie z. B. BIX-01294, zur Verbesserung ihres Differenzierungspotenzials beitragen kann. Folglich können Substanzen, die gezielt die Epigenetik beeinflussen, als Hilfsmittel dienen, um die Pluripotenz adulter Zellen zu erhöhen.

Abstract

Background

Autologous endothelial cells covering the inside of vascular grafts would markedly improve the survival of affected patients and would significantly reduce potential complications. However, it is difficult to obtain a sufficient yield of such cells. Epigenetic changes play an essential role in the regulation of gene transcription and organogenesis. Consequently, targeted changes in chromatin may also augment the pluripotency of somatic cells. The aim of the present study was to evaluate the effect of the epigenetic drug BIX-01294 (BIX) a histone G9a inhibitor, on DNA methylation, expression of the pluripotency genes POU5F1 (isoform a), NANOG, KLF4 and CMYC in mesenchymal stem cells and the ability to increase the differentiation potential into endothelial cells (EC).

Methods

Human mesenchymal stem cells were isolated from abdominal adipose tissue. Cells were pretreated with BIX for 48 h and further differentiated in endothelial medium for 7 and 14 days. Global DNA methylation was determined by PCR of the repetitive DNA sequence LINe1. Expression analysis was performed using SYBRgreen-based real-time PCR, immunocytochemistry and immunoblotting. Differentiation into endothelial cells was analyzed by detection of endothelial and angiogenic markers.

Results

After treatment of the mesenchymal cells with BIX, DNA methylation was significantly reduced by 53 % (P = 0.008), the expression of the pluripotency genes for POU5F1 and NANOG was increased 2.2-fold (P = 0.016) and 1.5-fold (P < 0.001), respectively. Furthermore, BIX pretreatment improved the differentiation capacity of mesenchymal cells into ECs and significantly increased expression of several endothelial markers and factors involved in blood vessel formation, such as VCAM-1, PECAM-1, von Willebrand factor, VEGFR-2, PDGF and ANG-1.

Conclusion

In the present study it was shown for the first time that treatment of mesenchymal cells with an appropriate epigenetic modifying drug, e.g. BIX-01294 increases the ability of these cells to differentiate into ECs. Consequently, targeted epigenetic modifications might be considered implemental to increase the differentiation potential of adult cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Peck M, Gebhart D, Dusserre N et al (2012) The evolution of vascular tissue engineering and current state of the art. Cells Tissues Organs 195(1–2):144–158

    Google Scholar 

  2. Watanabe M, Shin’oka T, Tohyama S et al (2001) Tissue-engineered vascular autograft: inferior vena cava replacement in a dog model. Tissue Eng 7:429–439

    Article  CAS  PubMed  Google Scholar 

  3. Yacoub MH (2006) The Ross operation – an evolutionary tale. Asian Cardiovasc Thorac Ann 14:1–2

    Article  PubMed  Google Scholar 

  4. Meinhart JG, Deutsch M, Fischlein T et al (2001) Clinical autologous in vitro endothelialization of 153 infrainguinal ePTFE grafts. Ann Thorac Surg 71:S327–331

    Article  CAS  PubMed  Google Scholar 

  5. Seifalian AM, Tiwari A, Hamilton G, Salacinski HJ (2002) Improving the clinical patency of prosthetic vascular and coronary bypass grafts: the role of seeding and tissue engineering. Artif Organs 26:307–320

    Article  PubMed  Google Scholar 

  6. Caplan AI (2005) Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng 11:1198–1211

    Article  CAS  PubMed  Google Scholar 

  7. Oswald J, Boxberger S, Jorgensen B et al (2004) Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 22:377–384

    Article  PubMed  Google Scholar 

  8. Pittenger MF, Mackay AM, Beck S et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  9. Fischer LJ, McIlhenny S, Tulenko T et al (2009) Endothelial differentiation of adipose-derived stem cells: effects of endothelial cell growth supplement and shear force. J Surg Res 152:157–166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Colazzo F, Chester AH, Taylor PM, Yacoub MH (2010) Induction of mesenchymal to endothelial transformation of adipose-derived stem cells. J Heart Valve Dis 19:736–744

    PubMed  Google Scholar 

  11. Li Z, Han Z, Wu JC (2009) Transplantation of human embryonic stem cell-derived endothelial cells for vascular diseases. J Cell Biochem 106:194–199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Tepper OM, Galiano RD, Capla JM et al (2002) Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 106:2781–2786

    Article  PubMed  Google Scholar 

  13. Luckey CJ, Lu Y, Marto JA (2011) Understanding the first steps in embryonic stem cell exit from the pluripotent state. Transfusion 51(Suppl 4):118S–124S

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Rossant J (2008) Stem cells and early lineage development. Cell 132:527–531

    Article  CAS  PubMed  Google Scholar 

  15. Rottach A, Leonhardt H, Spada F (2009) DNA methylation-mediated epigenetic control. J Cell Biochem 108:43–51

    Article  CAS  PubMed  Google Scholar 

  16. Hong CP, Park J, Roh TY (2011) Epigenetic regulation in cell reprogramming revealed by genome-wide analysis. Epigenomics 3:73–81

    Article  CAS  PubMed  Google Scholar 

  17. Kubicek S, O’Sullivan RJ, August EM et al (2007) Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol Cell 25:473–481

    Article  CAS  PubMed  Google Scholar 

  18. Shi Y, Desponts C, Do JT et al (2008) Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell stem Cell 3:568–574

    Article  CAS  PubMed  Google Scholar 

  19. Culmes M, Eckstein HH, Burgkart R et al (2013) Endothelial differentiation of adipose-derived mesenchymal stem cells is improved by epigenetic modifying drug BIX-01294. Eur J Cell Biol 92(2):70–79

    Article  CAS  PubMed  Google Scholar 

  20. Weisenberger DJ, Campan M, Long TI et al (2005) Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res 33:6823–6836

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Aurich H, Sgodda M, Kaltwasser P et al (2009) Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo. Gut 58:570–581

    Article  CAS  PubMed  Google Scholar 

  22. Feldman N, Gerson A, Fang J et al (2006) G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat Cell Biol 8:188–194

    Article  CAS  PubMed  Google Scholar 

  23. Feng B, Ng JH, Heng JC, Ng HH (2009) Molecules that promote or enhance reprogramming of somatic cells to induced pluripotent stem cells. Cell stem Cell 4:301–312

    Article  CAS  PubMed  Google Scholar 

  24. Karslioglu E, Kleinberger JW, Salim FG et al (2011) cMyc is a principal upstream driver of {beta}-cell proliferation in rat insulinoma cell lines and is an effective mediator of human β-cell replication. Mol Endocrinol 25:1760–1772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Denis N, Kitzis A, Kruh J et al (1991) Stimulation of methotrexate resistance and dihydrofolate reductase gene amplification by c-myc. Oncogene 6:1453–1457

    CAS  PubMed  Google Scholar 

  26. Shields JM, Christy RJ, Yang VW (1996) Identification and characterization of a gene encoding a gut-enriched Kruppel-like factor expressed during growth arrest. J Biol Chem 271:20009–20017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Nandan MO, Yang VW (2009) The role of Kruppel-like factors in the reprogramming of somatic cells to induced pluripotent stem cells. Histol Histopathol 24:1343–1355

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Rowland BD, Bernards R, Peeper DS (2005) The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol 7:1074–1082

    Article  CAS  PubMed  Google Scholar 

  29. Meng HM, Zheng P, Wang XY et al (2010) Overexpression of nanog predicts tumor progression and poor prognosis in colorectal cancer. Cancer Biol Ther 9:295–302

    Article  CAS  Google Scholar 

  30. Chio SH, Wang ML, Chou YT et al (2010) Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res 70:10433–10444

    Article  Google Scholar 

  31. Konno M, Hamazaki TS, Fukuda S et al (2010) Efficiently differentiating vascular endothelial cells from adipose tissue-derived mesenchymal stem cells in serum-free culture. Biochem Biophys Res Commun 400:461–465

    Article  CAS  PubMed  Google Scholar 

  32. Zuk PA, Zhu M, Ashjian P et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Park S, DiMaio TA, Scheef EA et al (2010) PECAM-1 regulates proangiogenic properties of endothelial cells through modulation of cell-cell and cell-matrix interactions. Am J Physiol Cell Physiol 299:C1468–C1484

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Michiels C (2003) Endothelial cell functions. J Cell Physiol 196:430–443

    Article  CAS  PubMed  Google Scholar 

  35. Karamysheva AF (2008) Mechanisms of angiogenesis. Biochemistry (Mosc) 73:751–762

  36. Shimizu M, Pelisek J, Nikol S (2002) Vasculogenesis and angiogenesis depend on the developmental origin in the arterial tree. Curr Med Chem 9:1619–1630

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. M. Culmes, A. Zernecke, H.-H. Eckstein und J. Pelisek geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Pelisek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Culmes, M., Zernecke, A., Eckstein, HH. et al. Die epigenetische Substanz BIX-01294 verbessert die Differenzierung mesenchymaler Zellen aus humanem Fettgewebe in Endothelzellen. Gefässchirurgie 19, 69–76 (2014). https://doi.org/10.1007/s00772-013-1271-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00772-013-1271-0

Schlüsselwörter

Keywords

Navigation