Skip to main content
Log in

Modernes Bildgebungsverfahren in der Diagnostik der Großgefäßvaskulitiden

18F-FDG-PET/CT

Modern imaging procedures in the diagnostics of large vessel vasculitis

18F-FDG-PET/CT

  • Übersichten
  • Published:
Gefässchirurgie Aims and scope Submit manuscript

Zusammenfassung

Diese Übersichtsarbeit befasst sich mit der Diagnostik der beiden Großgefäßvaskulitiden Takayasu-Arteriitis und Riesenzellarteriitis mit Hauptaugenmerk auf das nuklearmedizinische Verfahren der Positronen-Emissions-Tomographie mit 18F-Fluordeoxyglykose (18F-FDG-PET) und die Kombination mit der Computertomographie (18F-FDG-PET/CT). Trotz der technischen Weiterentwicklungen spielt die klinische Diagnostik bzw. die Duplexsonographie bei der Abklärung der Großgefäßvaskulitiden weiterhin eine wesentliche Rolle. Allerdings kann die 18F-FDG-PET bzw. 18F-FDG-PET/CT für spezielle Fragestellungen, wie der Ausbreitungsdiagnostik und der Darstellung des Befallsmusters der Arteriitis, einen wichtigen Beitrag liefern. Dieser Artikel gibt einen Einblick in die aktuelle Wertigkeit und in potenzielle Einsatzmöglichkeiten der 18F-FDG-PET/CT.

Abstract

This review article addresses the diagnostics of large vessel vasculitis (LVV), Takayasu vasculitis and giant cell vasculitis, with the focus on nuclear medicine techniques, namely positron emission tomography (PET) scans with 18F-fluorodeoxyglucose (18F-FDG-PET) and in combination with computed tomography (18F-FDG-PET/CT). Clinical diagnostics and duplex ultrasound still play a central role in the diagnostic workup of LVV, notwithstanding the technical improvements of these nuclear medicine techniques over the last years. The 18F-FDG-PET and 18F-FDG-PET/CT methods offer important clinical value for specific questions, such as disease dissemination or the pattern of dissemination of LVV. This article summarizes the current value and field of potential applications of 18F-FDG-PET/CT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Fuchs M, Briel M, Daikeler T et al (2012) The impact of (1)F-FDG PET on the management of patients with suspected large vessel vasculitis. Eur J Nucl Med Mol Imaging 39(2):344–353

    Article  PubMed  Google Scholar 

  2. Jennette JC, Falk RJ (1997) Small-vessel vasculitis. N Engl J Med 337(21):1512–1523

    Article  PubMed  CAS  Google Scholar 

  3. Czihal M, Bertsch J, Piller A, Hoffmann U (2012) Large vessel vasculitides: new insights. Dtsch Med Wochenschr 137(5):166–168

    Article  PubMed  CAS  Google Scholar 

  4. Arend WP, Michel BA, Bloch DA et al (1990) The American College of Rheumatology 1990 criteria for the classification of Takayasu arteritis. Arthritis Rheum 33(8):1129–1134

    Article  PubMed  CAS  Google Scholar 

  5. Jennette JC, Falk RJ, Andrassy K et al (1994) Nomenclature of systemic vasculitides. Proposal of an international consensus conference. Arthritis Rheum 37(2):187–192

    Article  PubMed  CAS  Google Scholar 

  6. Hunder GG, Bloch DA, Michel BA et al (1990) The American College of Rheumatology 1990 criteria for the classification of giant cell arteritis. Arthritis Rheum 33(8):1122–1128

    Article  PubMed  CAS  Google Scholar 

  7. Watts RA, Scott DG (2009) Recent developments in the classification and assessment of vasculitis. Best Pract Res Clin Rheumatol 23(3):429–443

    Article  PubMed  Google Scholar 

  8. Borg FA, Dasgupta B (2009) Treatment and outcomes of large vessel arteritis. Best Pract Res Clin Rheumatol 23(3):325–337

    Article  PubMed  Google Scholar 

  9. Liu NH, LaBree LD, Feldon SE, Rao NA (2001) The epidemiology of giant cell arteritis: a 12-year retrospective study. Ophthalmology 108(6):1145–1149

    Article  PubMed  CAS  Google Scholar 

  10. Kerr GS, Hallahan CW, Giordano J et al (1994) Takayasu arteritis. Ann Intern Med 120(11):919–929

    PubMed  CAS  Google Scholar 

  11. Belhocine T, Blockmans D, Hustinx R et al (2003) Imaging of large vessel vasculitis with (18)FDG PET: illusion or reality? A critical review of the literature data. Eur J Nucl Med Mol Imaging 30(9):1305–1313

    Article  PubMed  Google Scholar 

  12. Amendt K (1998) Takayasu-Arteriitis. Handbuch Akrale Durchblutungsstörungen, Epidemiologie, Pathogenese, Diagnostik und Therapie. Barth, Heidelberg

  13. Hunder GG (1990) Giant cell (temporal) arteritis. Rheum Dis Clin North Am 16(2):399–409

    PubMed  CAS  Google Scholar 

  14. Both M, Nolle B, Forstner C von et al (2009) Imaging techniques in the evaluation of primary large vessel vasculitides: part 1: angiography, interventional therapy, and magnetic resonance imaging. Z Rheumatol 68(6):471–484

    Article  PubMed  CAS  Google Scholar 

  15. Both M, Nolle B, Forstner C von et al (2009) Imaging techniques in the evaluation of primary large vessel vasculitides: Part 2: duplex ultrasound, positron emission tomography, computed tomography, and ophthalmological methods. Z Rheumatol 68(10):819–833

    Article  PubMed  CAS  Google Scholar 

  16. Pipitone N, Versari A, Salvarani C (2008) Role of imaging studies in the diagnosis and follow-up of large-vessel vasculitis: an update. Rheumatology (Oxford) 47(4):403–408

    Google Scholar 

  17. Arida A, Kyprianou M, Kanakis M, Sfikakis PP (2010) The diagnostic value of ultrasonography-derived edema of the temporal artery wall in giant cell arteritis: a second meta-analysis. BMC Musculoskelet Disord 11:44

    Article  PubMed  Google Scholar 

  18. Karassa FB, Matsagas MI, Schmidt WA, Ioannidis JP (2005) Meta-analysis: test performance of ultrasonography for giant-cell arteritis. Ann Intern Med 142(5):359–369

    PubMed  Google Scholar 

  19. Balink H, Houtman PM, Collins J (2011) 18F-FDG PET versus PET/CT as a diagnostic procedure for clinical suspicion of large vessel vasculitis. Clin Rheumatol 30(8):1139–1141

    Article  PubMed  Google Scholar 

  20. Kissin EY, Merkel PA (2004) Diagnostic imaging in Takayasu arteritis. Curr Opin Rheumatol 16(1):31–37

    Article  PubMed  Google Scholar 

  21. Park JH (1996) Conventional and CT angiographic diagnosis of Takayasu arteritis. Int J Cardiol 54(Suppl):S165–171

    Article  PubMed  Google Scholar 

  22. Chung JW, Kim HC, Choi YH et al (2007) Patterns of aortic involvement in Takayasu arteritis and its clinical implications: evaluation with spiral computed tomography angiography. J Vasc Surg 45(5):906–914

    Article  PubMed  Google Scholar 

  23. Yoshida S, Akiba H, Tamakawa M et al (2001) The spectrum of findings in supra-aortic Takayasu’s arteritis as seen on spiral CT angiography and digital subtraction angiography. Cardiovasc Intervent Radiol 24(2):117–121

    Article  PubMed  CAS  Google Scholar 

  24. Bley TA, Uhl M, Carew J et al (2007) Diagnostic value of high-resolution MR imaging in giant cell arteritis. AJNR Am J Neuroradiol 28(9):1722–1727

    Article  PubMed  CAS  Google Scholar 

  25. Borchers AT, Gershwin ME (2012) Giant cell arteritis: a review of classification, pathophysiology, geoepidemiology and treatment. Autoimmun Rev 11(6–7):A544–554

    Google Scholar 

  26. Nastri MV, Baptista LP, Baroni RH et al (2004) Gadolinium-enhanced three-dimensional MR angiography of Takayasu arteritis. Radiographics 24(3):773–786

    Article  PubMed  Google Scholar 

  27. Desai MY, Stone JH, Foo TK et al (2005) Delayed contrast-enhanced MRI of the aortic wall in Takayasu’s arteritis: initial experience. AJR Am J Roentgen 184(5):1427–1431

    Google Scholar 

  28. Moritani T, Hiwatashi A, Shrier DA et al (2004) CNS vasculitis and vasculopathy: efficacy and usefulness of diffusion-weighted echoplanar MR imaging. Clin Imaging 28(4):261–270

    Article  PubMed  Google Scholar 

  29. Kim SY, Park JH, Chung JW et al (2007) Follow-up CT evaluation of the mural changes in active Takayasu arteritis. Korean J Radiol 8(4):286–294

    Article  PubMed  Google Scholar 

  30. Basu S, Kwee TC, Surti S et al (2011) Fundamentals of PET and PET/CT imaging. Ann N Y Acad Sci 1228:1–18

    Article  PubMed  CAS  Google Scholar 

  31. Fletcher JW, Djulbegovic B, Soares HP et al (2008) Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med 49(3):480–508

    Article  PubMed  Google Scholar 

  32. Vaart MG van der, Meerwaldt R, Slart RH et al (2008) Application of PET/SPECT imaging in vascular disease. Eur J Vasc Endovasc Surg 35(5):507–513

    Article  PubMed  Google Scholar 

  33. Zhuang H, Yu JQ, Alavi A (2005) Applications of fluorodeoxyglucose-PET imaging in the detection of infection and inflammation and other benign disorders. Radiol Clin North Am 43(1):121–134

    Article  PubMed  Google Scholar 

  34. Wadsak W, Mitterhauser M (2010) Basics and principles of radiopharmaceuticals for PET/CT. Eur J Radiol 73(3):461–469

    Article  PubMed  CAS  Google Scholar 

  35. Cavalcanti Filho JL, Souza Leao Lima R de, Souza Machado Neto L de et al (2011) PET/CT and vascular disease: current concepts. Eur J Radiol 80(1):60–67

    Article  Google Scholar 

  36. Meller J, Strutz F, Siefker U et al (2003) Early diagnosis and follow-up of aortitis with [(18)F]FDG PET and MRI. Eur J Nucl Med Mol Imaging 30(5):730–736

    Article  PubMed  CAS  Google Scholar 

  37. Walter MA, Melzer RA, Schindler C et al (2005) The value of [18F]FDG-PET in the diagnosis of large-vessel vasculitis and the assessment of activity and extent of disease. Eur J Nucl Med Mol Imaging 32(6):674–681

    Article  PubMed  Google Scholar 

  38. Bleeker-Rovers CP, Bredie SJ, Meer JW van der et al (2004) Fluorine 18 fluorodeoxyglucose positron emission tomography in the diagnosis and follow-up of three patients with vasculitis. Am J Med 116(1):50–53

    Article  PubMed  Google Scholar 

  39. Brodmann M, Lipp RW, Passath A et al (2004) The role of 2-18F-fluoro-2-deoxy-D-glucose positron emission tomography in the diagnosis of giant cell arteritis of the temporal arteries. Rheumatology (Oxford) 43(2):241–242

    Google Scholar 

  40. Blockmans D, Ceuninck L de, Vanderschueren S et al (2006) Repetitive 18F-fluorodeoxyglucose positron emission tomography in giant cell arteritis: a prospective study of 35 patients. Arthritis Rheum 55(1):131–137

    Article  PubMed  Google Scholar 

  41. Besson FL, Parienti JJ, Bienvenu B et al (2011) Diagnostic performance of (1)F-fluorodeoxyglucose positron emission tomography in giant cell arteritis: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 38(9):1764–1772

    Article  PubMed  Google Scholar 

  42. Forster S, Tato F, Weiss M et al (2011) Patterns of extracranial involvement in newly diagnosed giant cell arteritis assessed by physical examination, colour coded duplex sonography and FDG-PET. Vasa 40(3):219–227

    Article  PubMed  CAS  Google Scholar 

  43. Papathanasiou ND, Du Y, Menezes LJ et al (2011) 18F-Fluorodeoxyglucose PET/CT in the evaluation of large-vessel vasculitis: diagnostic performance and correlation with clinical and laboratory parameters. Br J Radiol

  44. Tezuka D, Haraguchi G, Ishihara T et al (2012) Role of FDG PET-CT in Takayasu arteritis: sensitive detection of recurrences. JACC Cardiovasc Imaging 5(4):422–429

    Article  PubMed  Google Scholar 

  45. Leppanen O, Bjornheden T, Evaldsson M et al (2006) ATP depletion in macrophages in the core of advanced rabbit atherosclerotic plaques in vivo. Atherosclerosis 188(2):323–330

    Article  PubMed  Google Scholar 

  46. Delso G, Furst S, Jakoby B et al (2011) Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med 52(12):1914–1922

    Article  PubMed  Google Scholar 

  47. Drzezga A, Souvatzoglou M, Eiber M et al (2012) First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med 53(6):845–855

    Article  PubMed  Google Scholar 

  48. Schwenzer NF, Stegger L, Bisdas S et al (2012) Simultaneous PET/MR imaging in a human brain PET/MR system in 50 patients-Current state of image quality. Eur J Radiol 81(11):3472–3478

    Article  PubMed  CAS  Google Scholar 

  49. Petersdorf RG (1992) Fever of unknown origin. An old friend revisited. Arch Intern Med 152(1):21–22

    Article  PubMed  CAS  Google Scholar 

  50. Durack DT, Street AC (1991) Fever of unknown origin–reexamined and redefined. Curr Clin Top Infect Dis 11:35–51

    PubMed  CAS  Google Scholar 

  51. Meller J, Sahlmann CO, Scheel AK (2007) 18F-FDG PET and PET/CT in fever of unknown origin. J Nucl Med 48(1):35–45

    PubMed  CAS  Google Scholar 

  52. Dong MJ, Zhao K, Liu ZF et al (2011) A meta-analysis of the value of fluorodeoxyglucose-PET/PET-CT in the evaluation of fever of unknown origin. Eur J Radiol 80(3):834–844

    Article  PubMed  Google Scholar 

  53. Ergul N, Cermik TF (2011) FDG-PET or PET/CT in fever of unknown origin: the diagnostic role of underlying primary disease. Int J Mol Imaging 2011:318051

    PubMed  Google Scholar 

  54. Pedersen TI, Roed C, Knudsen LS et al (2012) Fever of unknown origin: a retrospective study of 52 cases with evaluation of the diagnostic utility of FDG-PET/CT. Scand J Infect Dis 44(1):18–23

    Article  PubMed  CAS  Google Scholar 

  55. Becerra Nakayo EM, Garcia Vicente AM, Soriano Castrejon AM et al (2011) Analysis of cost-effectiveness in the diagnosis of fever of unknown origin and the role of (18)F-FDG PET-CT: a proposal of diagnostic algorithm. Rev Esp Med Nucl (Epub ahead of print)

Download references

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Haneder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haneder, S., Sigl, M., Amendt, K. et al. Modernes Bildgebungsverfahren in der Diagnostik der Großgefäßvaskulitiden. Gefässchirurgie 17, 739–747 (2012). https://doi.org/10.1007/s00772-012-1088-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00772-012-1088-2

Schlüsselwörter

Keywords

Navigation