Skip to main content

Advertisement

Log in

Die Entwicklung von biologischen Gefäßprothesen für die Gefäßchirurgie

The development of biological vascular prostheses for vascular surgery

  • Leitthema
  • Published:
Gefässchirurgie Aims and scope Submit manuscript

Zusammenfassung

Die Einführung der peripheren Bypasschirurgie mit autologer V. saphena magna vor mehr als 60 Jahren bedeutete einen dramatischen Fortschritt in der Gefäßchirurgie. Bedauerlicherweise steht aber die autologe Vene als Transplantat nicht immer zur Verfügung, sodass schon frühzeitig die intensive Suche nach alternativen Blutleitern auch für den kleinkalibrigen Gefäßbereich einsetzte. Die Forschung erstreckte sich dabei nicht nur auf die heute bekannten synthetischen Gefäßprothesen aus PTFE oder Dacron, sondern auch biologische Materialien verschiedenster Herkunft wurden intensiv untersucht und sind teilweise bis heute im erfolgreichen klinischen Einsatz. Biologische Gefäßprothesen kommen in erster Linie in der peripheren Bypasschirurgie und in der Dialyseshuntchirurgie zur Anwendung. Ihre Entwicklung wird anhand dreier Grundprinzipien – des denaturierten heterologen Blutleiters, des autologen Kollagenconduits und des denaturierten homologen Blutleiters – beispielhaft dargestellt.

Abstract

Introduction of the autologous greater saphenous vein bypass more than 60 years ago marked a dramatic progress in vascular surgery. Unfortunately the saphenous vein is not always available as bypass material. Therefore, intensive efforts were made to develop alternative vascular conduits especially for smaller caliber arteries. Research activities not only focused on the now well known synthetic PTFE or Dacron vascular grafts, but also included a number of biological materials of different origin, some of which are still available for clinical use. Mainly biological vascular prostheses are used for peripheral bypass surgery or dialysis access. Development of these grafts is described according to three basic principles – denaturated heterologous blood vessels, autogenous reinforced collagen conduit and denaturated homologous blood vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10
Abb. 11
Abb. 12
Abb. 13

Literatur

  1. Aalders GJ, Vroonhoven TJ van (1992) Polytetrafluoroethylene versus human umbilical vein in above-knee femoropopliteal bypass: six-year results of a randomized clinical trial. J Vasc Surg 16(6):816–823

    Article  CAS  PubMed  Google Scholar 

  2. Anzola J, Palmer TH, Welch S (1951) Long femoral and iliofemoral grafts. Surg Forum 2:223–226

    Google Scholar 

  3. Boontje AH (1985) Aneurysm formation in human umbilical vein grafts used as arterial substitutes. J Vasc Surg 2(4):524–529

    Article  CAS  PubMed  Google Scholar 

  4. Burns P, Edwards GA, Roberts GR et al (1989) Performance of a new vascular xeno prosthesis. ASAIO Trans 35:214–218

    CAS  PubMed  Google Scholar 

  5. Carpenter JP, Tomaszewski JE (1998) Human saphenous vein allograft bypass grafts: immune response. J Vasc Surg 27:492–499

    Article  CAS  PubMed  Google Scholar 

  6. Chernia ES, Morsy M (2009) Randomized clinical trial comparing decellularized bovine ureter with expanded polytetrafluoroethylene for vascular access. Br J Surg 96:34–39

    Article  Google Scholar 

  7. Clarke DR, Lust RM, Sun YS et al (2001) Transformation of nonvascular acellular tissue matrices into durable vascular conduits. Ann Thorac Surg 71:S433–S436

    Article  CAS  PubMed  Google Scholar 

  8. Craig SR, Walker WS (1994) The use of bovine internal mammary artery (Bioflow) grafts in coronary artery surgery. Eur J Cardiothorac Surg 8:43–45

    Article  CAS  PubMed  Google Scholar 

  9. Creech O, Debakey ME, Self M et al (1954) The fate of heterologous arterial grafts: an experimental study. Surgery 36:431–444

    PubMed  Google Scholar 

  10. Dale WA, Lewis MR (1969) Modified bovine heterografts for arterial replacement. Ann Surg 169:927–946

    Article  CAS  PubMed  Google Scholar 

  11. Dardik I, Dardik H (1973) Vascular heterograft: human umbilical cord vein as an aortic substitute in baboon. A preliminary report. J Med Primatol 2:296–301

    CAS  PubMed  Google Scholar 

  12. Dardik H, Veith FJ, Spreyregen S et al (1974) Arterial reconstruction with a modified collagen tube: a clinical experience. Ann Surg 180:144–146

    Article  CAS  PubMed  Google Scholar 

  13. Dardik I, Dardik H (1975) The fate of human umbilical cord vessels used as interposition arterial grafts in the baboon. Surg Gynecol Obstet 140(4):567–571

    CAS  PubMed  Google Scholar 

  14. Dardik H, Ibrahim IM, Dardik I (1975) Modified and unmodified umbilical vein allografts and xenografts as arterial substitutes: morphologic assessment. Surg Forum 26:286–287

    CAS  PubMed  Google Scholar 

  15. Dardik H, Ibrahim IM, Dardik I (1977) Femoral tibial-peroneal bypass: the lateral approach and use of glutaraldehyde-tanned umbilical vein. Am J Surg 134(2):199–201

    Article  CAS  PubMed  Google Scholar 

  16. Dardik H, Ibrahim IM, Dardik I (1978) Evaluation of glutaraldehyde-tanned human umbilical cord vein as a vascular prosthesis for bypass to the popliteal, tibial, and peroneal arteries. Surgery 83(5):577–588

    CAS  PubMed  Google Scholar 

  17. Douglas JF, Gaughran ER, Henderson J et al (1956) The use of segmental arterial implants prepard by enzymatic modification of heterologous blood vessels. Surg Forum 7:242–246

    Google Scholar 

  18. Douglas JF, Gaughran ER, Henderson J et al (1957) The use of arterial implants prepard by enzymatic modification of arterial heterografts. II. The physical properties of the elastica and collagen components of the arterial wall. Arch Surg 74:89–95

    CAS  Google Scholar 

  19. Edwards GA, Roberts G (1992) Development of an ovine collagen-based composite biosynthetic vascular prosthesis. Clin Mater 9:211–223

    Article  CAS  PubMed  Google Scholar 

  20. Eickhoff JH, Buchardt Hansen HJ, Bromme A et al (1983) A randomized clinical trial of PTFE versus human umbilical vein for femoropopliteal bypass surgery. Preliminary results. Br J Surg 70(2):85–58

    Article  CAS  PubMed  Google Scholar 

  21. Eickhoff JH, Broome A, Ericsson BF et al (1987) Four years‘ results of a prospective, randomized clinical trial comparing polytetrafluoroethylene and modified human umbilical vein for below-knee femoropopliteal bypass. J Vasc Surg 6(5):506–511

    Article  CAS  PubMed  Google Scholar 

  22. Erasmi H, Horsch S, Müller J et al (1983) Gefässersatz bei kleinkalibrigen Arterien – eine neue bovine Kollagenprothese. Langenbecks Arch Chir 360:97–107

    Article  CAS  PubMed  Google Scholar 

  23. Field PL (2003) The chemically treated bovine ureter – clinical performance of a novel biological vascular prosthesis. Cardiovasc surg 11:30–34

    Article  CAS  PubMed  Google Scholar 

  24. Giudoin R, Thevenet A, Noel HP et al (1984) The Sparks-Mandril arterial prosthesis. An ingenious concept, a total failure. What can we learn from it? J Mal Vasc 9:277–283

    Google Scholar 

  25. Hallin RW, Sweetman WR (1976) The Sparks Mandril graft: a seven year follow up of mandril grafts placed by Charles H. sparks and his associates. Am J Surg 132:221–223

    Article  CAS  PubMed  Google Scholar 

  26. Harris L, O’brien-Irr M, Ricotta JJ (2001) Long-term assessment of cryopreserved vein bypass grafting success. J Vasc Surg 33:528–532

    Article  CAS  PubMed  Google Scholar 

  27. Harris RW, Schneider PA, Andros G et al (1993) Allograft vein bypass: is it an acceptable alternative for infrapopliteal revascularization? J Vasc Surg 18:553–560

    Article  CAS  PubMed  Google Scholar 

  28. Katzman HE, Glickman MH, Schild AF et al (2005) Multicenter evaluation of the bovine mesenteric vein bioprostheses for hemodialysis access in patients with an earlier failed prosthetic graft. J Am Coll Surg 201:223–230

    Article  PubMed  Google Scholar 

  29. Ketharnathan V, Christie BA (1980) Glutaraldehyde-tanned ovine collagen conduits as vascular xenografts in dogs: a preliminary report. Arch Surg 115:967–969

    CAS  PubMed  Google Scholar 

  30. Kovalic AJ, Beattie DK, Davies AH (2002) Outcome of ProCol, a bovine mesenteric vein graft, in infrainguinal reconstruction. Eur J Vasc Endovasc Surg 24:533–534

    Article  CAS  PubMed  Google Scholar 

  31. Kretschmer G, Polterauer P, Wagner O et al (1981) Sparks grafts as arterial substitutes in the femoro-popliteal region with postopeative follow-up of up to 54 months. Helv Chir Acta 48:243–250

    CAS  PubMed  Google Scholar 

  32. Kunlin J (1951) Le traitement de l’ischemie arteritique par la greffe veineuse longue. Rev Chir 70:206

    CAS  PubMed  Google Scholar 

  33. Leseche G, Pena C, Bouttier S et al (1997) Femorodistal bypass using cryopreserved saphenous vein allografts for limb salvage. Ann Vasc Surg 11:230–236

    Article  CAS  PubMed  Google Scholar 

  34. Martin RS III, Edwars WH, Mulherin JL et al (1994) Cryopreserved saphenous vein allografts for below-knee lower extremity revascularization. Ann Surg 219:664–672

    Article  PubMed  Google Scholar 

  35. Mindich B, Silverman M, Elguezabel A et al (1977) Human umbilical cord vein for vascular replacement: preliminary report and observations. Surgery 81(2):152–160

    CAS  PubMed  Google Scholar 

  36. Nabseth DC, Wilson JT, Tan B et al (1960) Fetal arterial heterografts. Arch Surg 81:929–933

    CAS  PubMed  Google Scholar 

  37. Ochsner JL, DeCamp PT, Leonard GL (1971) Experience with fresh venous allografts as arterial substitute. Ann Surg 173:933–939

    Article  CAS  PubMed  Google Scholar 

  38. Ramshaw JA, Peters DE, Werkmeister JA et al (1989) Collagen organization in mandrel-grown vascular grafts. J Biomed Mater Res 23:649–660

    Article  CAS  PubMed  Google Scholar 

  39. Roberts PN, Hopkinson BR (1977) The Sparks mandril in femoropopliteal bypass. Br Med J 2(6096):1190–1191

    Article  CAS  PubMed  Google Scholar 

  40. Rosenberg N, Henderson J, Lord GH et al (1958) Use of enzyme-treated heterografts as segmental arterial substitutes. III. Follow-up observations on two-year-old aortic implants. Arch Surg 76:275–281

    CAS  Google Scholar 

  41. Rosenberg N, Henderson J, Lord GH et al (1961) Use of enzyme-treated heterografts as segmental arterial substitutes. IV. Follow-up observations on five-year-old implants. Arch Surg 83:950–956

    CAS  PubMed  Google Scholar 

  42. Rosenberg N, Henderson J, Lord GH et al (1962) Biologic arterial prostheses of heterologous vascular origin. A progress report. Bull Soc Int Chir 21:13–20

    CAS  PubMed  Google Scholar 

  43. Rosenberg N, Henderson J, Lord GH et al (1962) Use of enzyme-treated heterografts as segmental arterial substitutes. V. Influence of processing factors on strength and invasion by host. Arch Surg 85:192–197

    CAS  PubMed  Google Scholar 

  44. Rosenberg N, Martinez A, Sawyer PN et al (1966) Tanned collagen arterial prosthesis of bovine carotid origin in man. Preliminary studies of enzyme treated heterografts. Ann Surg 164:247–256

    Article  CAS  PubMed  Google Scholar 

  45. Schmidli J, Savolainen H, Heller G et al (2004) Bovine mesenteric vein graft (ProCol) in critical limb ischemia with tissue loss and infection. Eur J Vasc Endovasc Surg 27:251–253

    CAS  PubMed  Google Scholar 

  46. Schröder A, Imig H, Peiper U et al (1988) Results of a bovine collagen vascular graft (Solcograft-P) in infra-inguinal positions. Eur J Vasc Surg 2:315–321

    Article  PubMed  Google Scholar 

  47. Settembrini PG, Spreafici G, Thiene G et al (1980) Remote results and critical review of the use of the Sparks-Mandril prosthesis. Minerva Chir 35:1461–1470

    CAS  PubMed  Google Scholar 

  48. Shah RM, Faggiolo GL, Mangione S et al (1993) Early results with cryopreserved saphenous vein allografts for infrainguinal bypass. J Vasc Surg 18:965–971

    Article  CAS  PubMed  Google Scholar 

  49. Sharp MA, Phillips D, Roberts I et al (2004) A cautionary case: The SynerGraft vascular prosthesis. Eur J Vasc Endovasc Surg 27:42–44

    Article  CAS  PubMed  Google Scholar 

  50. Spark JI, Yeluri S, Derham C et al (2008) Incomplete cellular depopulation may explain the high failure rate of bovine ureteric grafts. Br J Surg 95:582–585

    Article  CAS  PubMed  Google Scholar 

  51. Sparks C (1970) Die-grown reinforced arterial grafts: observations on long term animal grafts and clinical experience. Ann Surg 172:787–794

    Article  CAS  PubMed  Google Scholar 

  52. Sparks C (1972) Silicone mandril method of femoropopliteal bypass. Clinical experience and surgical techniques Am J Surg 124:244–249

    CAS  Google Scholar 

  53. Sparks C (1973) Silicone mandril method for growing reinforced autogenous femoro-popliteal artery grafts in situ. Ann Surg 177:293–300

    Article  CAS  PubMed  Google Scholar 

  54. Tice DA, Zerbino VR (1972) Clinical experience with preserved human allografts for vascular reconstruction. Surgery 72:260–267

    CAS  PubMed  Google Scholar 

  55. Urbany B, Spillner G, Schlosser V (1983) Spätergebnisse nach Verwendung heterologer Gefäßprothesen (Solco Prothesen). Angiography 5:59–65

    Google Scholar 

  56. Walker PJ, Mitchell S, McFadden et al (1993) Early experience with cryopreserved saphenous vein allografts as a conduit for complex limb-salvage procedures. J Vasc Surg 18:561–569

    Article  CAS  PubMed  Google Scholar 

  57. Walter P, Schmitz H (1976) Der heterologe Gefäßersatz. Editio Cantor Aulendorf

  58. Weber TR, Lindenauer SM, Dent TL (1976) Long-term patency of vein grafts preserved in liquid nitrogen in dimethyl-suloxide. 184:709–712

  59. Werkmeister JA, Glattauer V, Tebb TA et al (1991) Structural stability of long term implants of a collagen-based vascular prosthesis. J Long term Eff Med Implants 1:107–119

    CAS  PubMed  Google Scholar 

  60. White JF, Werkmeister JA, Edwards GA et al (1993) Structural analysis of a collagen-polyester composite vascular prosthesis. Clin Mater 14:271–276

    Article  CAS  PubMed  Google Scholar 

  61. Williams GM, Krajewski CA, Dagher FJ et al (1971) Host repopulation of endothelium. Transplant Proc 3:869–872

    CAS  PubMed  Google Scholar 

  62. Yong NK, Eiseman B (1962) The experimental use of heterologous umbilical vein grafts as aortic substitutes. Singapore Med J 3:52–57

    CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Neufang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neufang, A. Die Entwicklung von biologischen Gefäßprothesen für die Gefäßchirurgie. Gefässchirurgie 15, 90–100 (2010). https://doi.org/10.1007/s00772-009-0727-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00772-009-0727-8

Schlüsselwörter

Keywords

Navigation