Skip to main content

Advertisement

Log in

Therapeutisches Potenzial der Stickstoffmonoxid-Synthase-Isoformen in Restenose, Transplantat- und Bypassarteriosklerose

Therapeutic potential of nitric oxide synthase isoforms in restenosis, transplantation and bypass atherosclerosis

  • Übersichten
  • Published:
Gefässchirurgie Aims and scope Submit manuscript

Zusammenfassung

Die verschiedenen biologischen Effekte von Stickstoffmonoxid (NO) haben zu einer intensiven Erforschung der Rolle von NO in der Physiologie und Pathophysiologie von Gefäßerkrankungen geführt. Durch Zuhilfenahme von rekombinanter DNA und Gentransfer konnte der Effekt der endogenen NO-Produktion durch die Familie der NO-Synthase-Enzyme (NOS) in unterschiedlichen Geweben untersucht werden. Die Umsetzbarkeit einer vaskulären NOS-Gentherapie konnte in Tiermodellen gut demonstriert werden. Vor einer möglichen Anwendung der NOS-Gentherapie sollten allerdings aktuelle technische Limitationen und Sicherheitsrisiken genauer evaluiert werden. Da bekannt ist, das NO einen erheblichen Einfluss auf die spontane Arterioskleroseentwicklung, die Restenose nach Angioplastie, die Arterioskleroseentwicklung in Transplantatvenen und Transplantatarterien sowie die kardiale Allotransplantvaskulopathie hat, soll dieser Artikel den aktuellen Stand der Forschung mit besonderem Augenmerk auf die potenziellen Möglichkeiten einer NOS modulierenden Therapie zusammenfassen.

Abstract

The diverse biological effects of nitric oxide (NO) have led to intense research into its roles in vascular physiology and pathophysiology. Using recombinant DNA and gene transfer the effects of endogenous NO production by the family of NO synthase (NOS) enzymes can be elegantly studied in a variety of tissues. In addition, the feasibility of vascular NOS gene therapy has been demonstrated in animal models. However, technical and safety limitations have to be addressed before NOS gene therapy for cardiovascular disease is available for humans. Since NO exerts critical functions in vascular pathology, including atherosclerosis, post-angioplasty restenosis, vein graft atherosclerosis, transplant atherosclerosis and cardiac allograft vasculopathy, this article reviews recent progress in the field with a focus on potential future applications of NOS-modulating therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Archer SL, Huang JM, Hampl V et al (1994) Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin-sensitive K channel by cGMP-dependent protein kinase. Proc Natl Acad Sci USA 91:7583–7587

    PubMed  CAS  Google Scholar 

  2. Gambaryan S, Kobsar A, Hartmann S et al (2008) NO-synthase-/NO-independent regulation of human and murine platelet soluble guanylyl cyclase activity. J Thromb Haemost 6:1376–1384

    PubMed  CAS  Google Scholar 

  3. Cerwinka WH, Cooper D, Krieglstein CF et al (2002) Nitric oxide modulates endotoxin-induced platelet-endothelial cell adhesion in intestinal venules. Am J Physiol Heart Circ Physiol 282:H1111–H1117

    PubMed  CAS  Google Scholar 

  4. Kubes P, Suzuki M, Granger DN (1991) Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 88:4651–4655

    PubMed  CAS  Google Scholar 

  5. Radomski MW, Palmer RM, Moncada S (1987) The anti-aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. Br J Pharmacol 92:639–646

    PubMed  CAS  Google Scholar 

  6. Massberg S, Gruner S, Konrad I et al (2004) Enhanced in vivo platelet adhesion in vasodilator-stimulated phosphoprotein (VASP)-deficient mice. Blood 103:136–142

    PubMed  CAS  Google Scholar 

  7. Garg UC, Hassid A (1989) Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 83:1774–1777

    PubMed  CAS  Google Scholar 

  8. Nishio E, Fukushima K, Shiozaki M et al (1996) Nitric oxide donor SNAP induces apoptosis in smooth muscle cells through cGMP-independent mechanism. Biochem Biophys Res Commun 221:163–168

    PubMed  CAS  Google Scholar 

  9. Dimmeler S, Zeiher AM (1999) Nitric oxide-an endothelial cell survival factor. Cell Death Differ 6:964–968

    PubMed  CAS  Google Scholar 

  10. Ranjan V, Xiao Z, Diamond SL (1995) Constitutive NOS expression in cultured endothelial cells is elevated by fluid shear stress. Am J Physiol 269:H550–555

    PubMed  CAS  Google Scholar 

  11. Strijdom H, Jacobs S, Hattingh S et al (2006) Nitric oxide production is higher in rat cardiac microvessel endothelial cells than ventricular cardiomyocytes in baseline and hypoxic conditions: a comparative study. Faseb J 20:314–316

    PubMed  CAS  Google Scholar 

  12. Bredt DS, Hwang PM, Snyder SH (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347:768–770

    PubMed  CAS  Google Scholar 

  13. Bachetti T, Comini L, Curello S et al (2004) Co-expression and modulation of neuronal and endothelial nitric oxide synthase in human endothelial cells. J Mol Cell Cardiol 37:939–945

    PubMed  CAS  Google Scholar 

  14. Papadaki M, Tilton RG, Eskin SG et al (1998) Nitric oxide production by cultured human aortic smooth muscle cells: stimulation by fluid flow. Am J Physiol 274:H616-626

    PubMed  CAS  Google Scholar 

  15. Wilcox JN, Subramanian RR, Sundell CL et al (1997) Expression of multiple isoforms of nitric oxide synthase in normal and atherosclerotic vessels. Arterioscler Thromb Vasc Biol 17:2479–2488

    PubMed  CAS  Google Scholar 

  16. Schwarz PM, Kleinert H, Forstermann U (1999) Potential functional significance of brain-type and muscle-type nitric oxide synthase I expressed in adventitia and media of rat aorta. Arterioscler Thromb Vasc Biol 19:2584–2590

    PubMed  CAS  Google Scholar 

  17. Kuhlencordt PJ, Gyurko R, Han F et al (2001) Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart disease in apolipoprotein E/endothelial nitric oxide synthase double-knockout mice. Circulation 104:448–454

    PubMed  CAS  Google Scholar 

  18. Kuhlencordt PJ, Hotten S, Schodel J et al (2006) Atheroprotective effects of neuronal nitric oxide synthase in apolipoprotein e knockout mice. Arterioscler Thromb Vasc Biol 26:1539–1544

    PubMed  CAS  Google Scholar 

  19. Kuhlencordt PJ, Chen J, Han F et al (2001) Genetic deficiency of inducible nitric oxide synthase reduces atherosclerosis and lowers plasma lipid peroxides in apolipoprotein E-knockout mice. Circulation 103:3099–3104

    PubMed  CAS  Google Scholar 

  20. Cooke JP, Dzau VJ (1997) Nitric oxide synthase: role in the genesis of vascular disease. Annu Rev Med 48:489–509

    PubMed  CAS  Google Scholar 

  21. Vasquez-Vivar J, Kalyanaraman B, Martasek P (2003) The role of tetrahydrobiopterin in superoxide generation from eNOS: enzymology and physiological implications. Free Radic Res 37:121–127

    PubMed  CAS  Google Scholar 

  22. Xia Y, Dawson VL, Dawson TM et al (1996) Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury. Proc Natl Acad Sci USA 93:6770–6774

    PubMed  CAS  Google Scholar 

  23. Pou S, Pou WS, Bredt DS et al (1992) Generation of superoxide by purified brain nitric oxide synthase. J Biol Chem 267:24173–24176

    PubMed  CAS  Google Scholar 

  24. Huie RE, Padmaja S (1993) The reaction of no with superoxide. Free Radic Res Commun 18:195–199

    PubMed  CAS  Google Scholar 

  25. White CR, Brock TA, Chang LY et al (1994) Superoxide and peroxynitrite in atherosclerosis. Proc Natl Acad Sci USA 91:1044–1048

    PubMed  CAS  Google Scholar 

  26. Radi R, Beckman JS, Bush KM et al (1991) Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 266:4244–4250

    PubMed  CAS  Google Scholar 

  27. Rubbo H, Radi R, Trujillo M et al (1994) Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives. J Biol Chem 269:26066–26075

    PubMed  CAS  Google Scholar 

  28. Papapetropoulos A, Rudic RD, Sessa WC (1999) Molecular control of nitric oxide synthases in the cardiovascular system. Cardiovasc Res 43:509–520

    PubMed  CAS  Google Scholar 

  29. Ignarro LJ, Napoli C (2005) Novel features of nitric oxide, endothelial nitric oxide synthase, and atherosclerosis. Curr Diab Rep 5:17–23

    PubMed  CAS  Google Scholar 

  30. Napoli C, de Nigris F, Williams-Ignarro S et al (2006) Nitric oxide and atherosclerosis: an update. Nitric Oxide 15:265–279

    PubMed  CAS  Google Scholar 

  31. Fattori R, Piva T (2003) Drug-eluting stents in vascular intervention. Lancet 361:247–249

    PubMed  Google Scholar 

  32. Pauletto P, Sartore S, Pessina AC (1994) Smooth-muscle-cell proliferation and differentiation in neointima formation and vascular restenosis. Clin Sci (Lond) 87:467–479

    Google Scholar 

  33. Lafont A, Durand E, Samuel JL et al (1999) Endothelial dysfunction and collagen accumulation: two independent factors for restenosis and constrictive remodeling after experimental angioplasty. Circulation 100:1109–1115

    PubMed  CAS  Google Scholar 

  34. Davis SF, Yeung AC, Meredith IT et al (1996) Early endothelial dysfunction predicts the development of transplant coronary artery disease at 1 year posttransplant. Circulation 93:457–462

    PubMed  CAS  Google Scholar 

  35. Clowes AW, Clowes MM, Reidy MA (1986) Kinetics of cellular proliferation after arterial injury. III. Endothelial and smooth muscle growth in chronically denuded vessels. Lab Invest 54:295–303

    PubMed  CAS  Google Scholar 

  36. Schwartz SM (1997) Perspectives series: cell adhesion in vascular biology. Smooth muscle migration in atherosclerosis and restenosis. J Clin Invest 99:2814–2816

    PubMed  CAS  Google Scholar 

  37. Moroi M, Zhang L, Yasuda T et al (1998) Interaction of genetic deficiency of endothelial nitric oxide, gender, and pregnancy in vascular response to injury in mice. J Clin Invest 101:1225–1232

    PubMed  CAS  Google Scholar 

  38. Marks DS, Vita JA, Folts JD et al (1995) Inhibition of neointimal proliferation in rabbits after vascular injury by a single treatment with a protein adduct of nitric oxide. J Clin Invest 96:2630–2638

    PubMed  CAS  Google Scholar 

  39. Baek SH, Hrabie JA, Keefer LK et al (2002) Augmentation of intrapericardial nitric oxide level by a prolonged-release nitric oxide donor reduces luminal narrowing after porcine coronary angioplasty. Circulation 105:2779–2784

    PubMed  CAS  Google Scholar 

  40. Meurice T, Vallet B, Bauters C et al (1996) Role of endothelial cells in restenosis after coronary angioplasty. Fundam Clin Pharmacol 10:234–242

    PubMed  CAS  Google Scholar 

  41. Xu Q (2004) Mouse models of arteriosclerosis: from arterial injuries to vascular grafts. Am J Pathol 165:1–10

    PubMed  Google Scholar 

  42. Major TC, Overhiser RW, Panek RL (1995) Evidence for NO involvement in regulating vascular reactivity in balloon-injured rat carotid artery. Am J Physiol 269:H988–H996

    PubMed  CAS  Google Scholar 

  43. von der Leyen HE, Gibbons GH, Morishita R et al (1995) Gene therapy inhibiting neointimal vascular lesion: in vivo transfer of endothelial cell nitric oxide synthase gene. Proc Natl Acad Sci USA 92:1137–1141

    Google Scholar 

  44. Janssens S, Flaherty D, Nong Z et al (1998) Human endothelial nitric oxide synthase gene transfer inhibits vascular smooth muscle cell proliferation and neointima formation after balloon injury in rats. Circulation 97:1274–1281

    PubMed  CAS  Google Scholar 

  45. Chen L, Daum G, Forough R et al (1998) Overexpression of human endothelial nitric oxide synthase in rat vascular smooth muscle cells and in balloon-injured carotid artery. Circ Res 82:862–870

    PubMed  CAS  Google Scholar 

  46. Varenne O, Sinnaeve P, Gillijns H et al (2000) Percutaneous gene therapy using recombinant adenoviruses encoding human herpes simplex virus thymidine kinase, human PAI-1, and human NOS3 in balloon-injured porcine coronary arteries. Hum Gene Ther 11:1329–1339

    PubMed  CAS  Google Scholar 

  47. Cooney R, Hynes SO, Sharif F et al (2007) Effect of gene delivery of NOS isoforms on intimal hyperplasia and endothelial regeneration after balloon injury. Gene Ther 14:396–404

    PubMed  CAS  Google Scholar 

  48. Kullo IJ, Schwartz RS, Pompili VJ et al (1997) Expression and function of recombinant endothelial NO synthase in coronary artery smooth muscle cells. Arterioscler Thromb Vasc Biol 17:2405–2412

    PubMed  CAS  Google Scholar 

  49. Sato J, Nair K, Hiddinga J et al (2000) eNOS gene transfer to vascular smooth muscle cells inhibits cell proliferation via upregulation of p27 and p21 and not apoptosis. Cardiovasc Res 47:697–706

    PubMed  CAS  Google Scholar 

  50. Kibbe MR, Li J, Nie S et al (2000) Inducible nitric oxide synthase (iNOS) expression upregulates p21 and inhibits vascular smooth muscle cell proliferation through p42/44 mitogen-activated protein kinase activation and independent of p53 and cyclic guanosine monophosphate. J Vasc Surg 31:1214–1228

    PubMed  CAS  Google Scholar 

  51. Varenne O, Pislaru S, Gillijns H et al (1998) Local adenovirus-mediated transfer of human endothelial nitric oxide synthase reduces luminal narrowing after coronary angioplasty in pigs. Circulation 98:919–926

    PubMed  CAS  Google Scholar 

  52. Michel T, Feron O (1997) Nitric oxide synthases: which, where, how, and why? J Clin Invest 100:2146–2152

    PubMed  CAS  Google Scholar 

  53. Xia Y, Zweier JL (1997) Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages. Proc Natl Acad Sci USA 94:6954–6958

    PubMed  CAS  Google Scholar 

  54. Sato J, Mohacsi T, Noel A et al (2000) In vivo gene transfer of endothelial nitric oxide synthase to carotid arteries from hypercholesterolemic rabbits enhances endothelium-dependent relaxations. Stroke 31:968–975

    PubMed  CAS  Google Scholar 

  55. Zanetti M, d’Uscio LV, Kovesdi I et al (2003) In vivo gene transfer of inducible nitric oxide synthase to carotid arteries from hypercholesterolemic rabbits. Stroke 34:1293–1298

    PubMed  CAS  Google Scholar 

  56. Six I, Van Belle E, Bordet R et al (1999) L-arginine and L-NAME have no effects on the reendothelialization process after arterial balloon injury. Cardiovasc Res 43:731–738

    PubMed  CAS  Google Scholar 

  57. Hansson GK, Geng YJ, Holm J et al (1994) Arterial smooth muscle cells express nitric oxide synthase in response to endothelial injury. J Exp Med 180:733–738

    PubMed  CAS  Google Scholar 

  58. Tzeng E, Shears LL, 2nd, Robbins PD et al (1996) Vascular gene transfer of the human inducible nitric oxide synthase: characterization of activity and effects on myointimal hyperplasia. Mol Med 2:211–225

    PubMed  CAS  Google Scholar 

  59. Tzeng E, Kim YM, Pitt BR et al (1997) Adenoviral transfer of the inducible nitric oxide synthase gene blocks endothelial cell apoptosis. Surgery 122:255–263

    PubMed  CAS  Google Scholar 

  60. Shears LL, 2nd, Kibbe MR, Murdock AD et al (1998) Efficient inhibition of intimal hyperplasia by adenovirus-mediated inducible nitric oxide synthase gene transfer to rats and pigs in vivo. J Am Coll Surg 187:295–306

    PubMed  Google Scholar 

  61. Newman KD, Dunn PF, Owens JW et al (1995) Adenovirus-mediated gene transfer into normal rabbit arteries results in prolonged vascular cell activation, inflammation, and neointimal hyperplasia. J Clin Invest 96:2955–2965

    PubMed  CAS  Google Scholar 

  62. Muhs A, Heublein B, Schletter J et al (2003) Preclinical evaluation of inducible nitric oxide synthase lipoplex gene therapy for inhibition of stent-induced vascular neointimal lesion formation. Hum Gene Ther 14:375–383

    PubMed  CAS  Google Scholar 

  63. U.S. Department of Health and Human Services, National Institutes of Health (2001) Recombinant DNA Advisory Committee: minutes of meeting, December 13 & 15, 2000. Hum Gene Ther 12:1559–1584

    Google Scholar 

  64. Fichtlscherer S MA, Hamm CW, Rupprecht HJ et al (2002) REGENT 1 (Restenosis Gene Theraphy trial): first clinical results after local intracoronary application of iNOS-lipoplex-gene product. Europeant Heart Journal (Suppl) 252

  65. Channon KM, Blazing MA, Shetty GA et al (1996) Adenoviral gene transfer of nitric oxide synthase: high level expression in human vascular cells. Cardiovasc Res 32:962–972

    PubMed  CAS  Google Scholar 

  66. Channon KM, Qian H, Neplioueva V et al (1998) In vivo gene transfer of nitric oxide synthase enhances vasomotor function in carotid arteries from normal and cholesterol-Fed rabbits. Circulation 98:1905–1911

    PubMed  CAS  Google Scholar 

  67. Qian H, Neplioueva V, Shetty GA et al (1999) Nitric oxide synthase gene therapy rapidly reduces adhesion molecule expression and inflammatory cell infiltration in carotid arteries of cholesterol-fed rabbits. Circulation 99:2979–2982

    PubMed  CAS  Google Scholar 

  68. Szocs K, Lassegue B, Sorescu D et al (2002) Upregulation of Nox-based NAD(P)H oxidases in restenosis after carotid injury. Arterioscler Thromb Vasc Biol 22:21–27

    PubMed  CAS  Google Scholar 

  69. Souza HP, Souza LC, Anastacio VM et al (2000) Vascular oxidant stress early after balloon injury: evidence for increased NAD(P)H oxidoreductase activity. Free Radic Biol Med 28:1232–1242

    PubMed  CAS  Google Scholar 

  70. Leite PF, Danilovic A, Moriel P et al (2003) Sustained decrease in superoxide dismutase activity underlies constrictive remodeling after balloon injury in rabbits. Arterioscler Thromb Vasc Biol 23:2197–2202

    PubMed  CAS  Google Scholar 

  71. Motwani JG, Topol EJ (1998) Aortocoronary saphenous vein graft disease: pathogenesis, predisposition, and prevention. Circulation 97:916–931

    PubMed  CAS  Google Scholar 

  72. Angelini GD, Breckenridge IM, Psaila JV et al (1987) Preparation of human saphenous vein for coronary artery bypass grafting impairs its capacity to produce prostacyclin. Cardiovasc Res 21:28–33

    PubMed  CAS  Google Scholar 

  73. Golden MA, Au YP, Kirkman TR et al (1991) Platelet-derived growth factor activity and mRNA expression in healing vascular grafts in baboons. Association in vivo of platelet-derived growth factor mRNA and protein with cellular proliferation. J Clin Invest 87:406–414

    PubMed  CAS  Google Scholar 

  74. Kalra M, Miller VM (2000) Early remodeling of saphenous vein grafts: proliferation, migration and apoptosis of adventitial and medial cells occur simultaneously with changes in graft diameter and blood flow. J Vasc Res 37:576–584

    Article  PubMed  CAS  Google Scholar 

  75. Zwolak RM, Adams MC, Clowes AW (1987) Kinetics of vein graft hyperplasia: association with tangential stress. J Vasc Surg 5:126–136

    PubMed  CAS  Google Scholar 

  76. Ratliff NB, Myles JL (1989) Rapidly progressive atherosclerosis in aortocoronary saphenous vein grafts. Possible immune-mediated disease. Arch Pathol Lab Med 113:772–776

    PubMed  CAS  Google Scholar 

  77. Jeremy JY, Dashwood MR, Timm M et al (1997) Nitric oxide synthase and adenylyl and guanylyl cyclase activity in porcine interposition vein grafts. Ann Thorac Surg 63:470–476

    PubMed  CAS  Google Scholar 

  78. Jeremy JY, Izzat MB, Birkett SD et al (1996) Reduced prostacyclin and increased leukotriene B4 synthesis in porcine venous-arterial grafts. Ann Thorac Surg 61:143–148

    PubMed  CAS  Google Scholar 

  79. Komori K, Schini VB, Gloviczki P et al (1991) The impairment of endothelium-dependent relaxations in reversed vein grafts is associated with a reduced production of cyclic guanosine monophosphate. J Vasc Surg 14:67–75

    PubMed  CAS  Google Scholar 

  80. Ishii T, Okadome K, Komori K et al (1993) Natural course of endothelium-dependent and -independent responses in autogenous femoral veins grafted into the arterial circulation of the dog. Circ Res 72:1004–1010

    PubMed  CAS  Google Scholar 

  81. Davies MG, Kim JH, Dalen H et al (1994) Reduction of experimental vein graft intimal hyperplasia and preservation of nitric oxide-mediated relaxation by the nitric oxide precursor L-arginine. Surgery 116:557–568

    PubMed  CAS  Google Scholar 

  82. Kown MH, Yamaguchi A, Jahncke CL et al (2001) L-arginine polymers inhibit the development of vein graft neointimal hyperplasia. J Thorac Cardiovasc Surg 121:971–980

    PubMed  CAS  Google Scholar 

  83. Harrison DG (1993) Endothelial dysfunction in the coronary microcirculation: a new clinical entity or an experimental finding? J Clin Invest 91:1–2

    PubMed  CAS  Google Scholar 

  84. Davies MG, Dalen H, Kim JH et al (1995) Control of accelerated vein graft atheroma with the nitric oxide precursor: L-arginine. J Surg Res 59:35–42

    PubMed  CAS  Google Scholar 

  85. Chaux A, Ruan XM, Fishbein MC et al (1998) Perivascular delivery of a nitric oxide donor inhibits neointimal hyperplasia in vein grafts implanted in the arterial circulation. J Thorac Cardiovasc Surg 115:604–612; discussion 612–604

    PubMed  CAS  Google Scholar 

  86. Cable DG, Schaff HV (2001) Gene therapy for vein graft disease. Curr Cardiol Rep 3:22–28

    PubMed  CAS  Google Scholar 

  87. Cable DG, Caccitolo JA, Caplice N et al (1999) The role of gene therapy for intimal hyperplasia of bypass grafts. Circulation 100:II392–II396

    PubMed  CAS  Google Scholar 

  88. Cable DG, O’Brien T, Schaff HV et al (1997) Recombinant endothelial nitric oxide synthase-transduced human saphenous veins: gene therapy to augment nitric oxide production in bypass conduits. Circulation 96:II173– II178

    Google Scholar 

  89. Cable DG, O’Brien T, Kullo IJ et al (1997) Expression and function of a recombinant endothelial nitric oxide synthase gene in porcine coronary arteries. Cardiovasc Res 35:553–559

    PubMed  CAS  Google Scholar 

  90. Matsumoto T, Komori K, Yonemitsu Y et al (1998) Hemagglutinating virus of Japan-liposome-mediated gene transfer of endothelial cell nitric oxide synthase inhibits intimal hyperplasia of canine vein grafts under conditions of poor runoff. J Vasc Surg 27:135–144

    PubMed  CAS  Google Scholar 

  91. Campeau L, Enjalbert M, Lesperance J et al (1984) The relation of risk factors to the development of atherosclerosis in saphenous-vein bypass grafts and the progression of disease in the native circulation. A study 10 years after aortocoronary bypass surgery. N Engl J Med 311:1329–1332

    PubMed  CAS  Google Scholar 

  92. Ohta S, Komori K, Yonemitsu Y et al (2002) Intraluminal gene transfer of endothelial cell-nitric oxide synthase suppresses intimal hyperplasia of vein grafts in cholesterol-fed rabbit: a limited biological effect as a result of the loss of medial smooth muscle cells. Surgery 131:644–653

    PubMed  Google Scholar 

  93. West NE, Qian H, Guzik TJ et al (2001) Nitric oxide synthase (nNOS) gene transfer modifies venous bypass graft remodeling: effects on vascular smooth muscle cell differentiation and superoxide production. Circulation 104:1526–1532

    PubMed  CAS  Google Scholar 

  94. Kibbe MR, Tzeng E, Gleixner SL et al (2001) Adenovirus-mediated gene transfer of human inducible nitric oxide synthase in porcine vein grafts inhibits intimal hyperplasia. J Vasc Surg 34:156–165

    PubMed  CAS  Google Scholar 

  95. Kibbe MR, Nie S, Yoneyama T et al (1999) Optimization of ex vivo inducible nitric oxide synthase gene transfer to vein grafts. Surgery 126:323–329

    PubMed  CAS  Google Scholar 

  96. Mayr U, Zou Y, Zhang Z et al (2006) Accelerated arteriosclerosis of vein grafts in inducible NO synthase(-/-) mice is related to decreased endothelial progenitor cell repair. Circ Res 98:412–420

    PubMed  CAS  Google Scholar 

  97. Pfeiffer T, Wallich M, Sandmann W et al (2006) Lipoplex gene transfer of inducible nitric oxide synthase inhibits the reactive intimal hyperplasia after expanded polytetrafluoroethylene bypass grafting. J Vasc Surg 43:1021–1027

    PubMed  Google Scholar 

  98. Cable DG, Caccitolo JA, Pearson PJ et al (1998) New approaches to prevention and treatment of radial artery graft vasospasm. Circulation 98:II15–II21; discussion II21–II12

    PubMed  CAS  Google Scholar 

  99. Zou Y, Dietrich H, Hu Y et al (1998) Mouse model of venous bypass graft arteriosclerosis. Am J Pathol 153:1301–1310

    PubMed  CAS  Google Scholar 

  100. Kullo IJ, Mozes G, Schwartz RS et al (1997) Adventitial gene transfer of recombinant endothelial nitric oxide synthase to rabbit carotid arteries alters vascular reactivity. Circulation 96:2254–2261

    PubMed  CAS  Google Scholar 

  101. Chen AF, Jiang SW, Crotty TB et al (1997) Effects of in vivo adventitial expression of recombinant endothelial nitric oxide synthase gene in cerebral arteries. Proc Natl Acad Sci USA 94:12568–12573

    PubMed  CAS  Google Scholar 

  102. Tsutsui M, Chen AF, O’Brien T et al (1998) Adventitial expression of recombinant eNOS gene restores NO production in arteries without endothelium. Arterioscler Thromb Vasc Biol 18:1231–1241

    PubMed  CAS  Google Scholar 

  103. Ooboshi H, Toyoda K, Faraci FM et al (1998) Improvement of relaxation in an atherosclerotic artery by gene transfer of endothelial nitric oxide synthase. Arterioscler Thromb Vasc Biol 18:1752–1758

    PubMed  CAS  Google Scholar 

  104. Suzuki J, Aikawa M, Isobe M et al (1995) Altered expression of smooth muscle and non-muscle myosin heavy chain isoforms in rejected hearts: a sensitive marker for acute rejection and graft coronary arteriosclerosis. Transplant Proc 27:578

    PubMed  CAS  Google Scholar 

  105. Rahmani M, Cruz RP, Granville DJ et al (2006) Allograft vasculopathy versus atherosclerosis. Circ Res 99:801–815

    PubMed  CAS  Google Scholar 

  106. Avery RK (2003) Cardiac-allograft vasculopathy. N Engl J Med 349:829–830

    PubMed  Google Scholar 

  107. Neish AS, Loh E, and choen FJ (1992) Myocardial changes in cardiac transplant-associated coronary arteriosclerosis: potential for timely diagnosis. J Am Coll Cardiol 19:586–592

    Article  PubMed  CAS  Google Scholar 

  108. Ventura HO, Mehra MR, Smart FW et al (1995) Cardiac allograft vasculopathy: current concepts. Am Heart J 129:791–799

    PubMed  CAS  Google Scholar 

  109. Russell ME, Wallace AF, Wyner LR et al (1995) Upregulation and modulation of inducible nitric oxide synthase in rat cardiac allografts with chronic rejection and transplant arteriosclerosis. Circulation 92:457–464

    PubMed  CAS  Google Scholar 

  110. El-Hamamsy I, Stevens LM, Vanhoutte PM et al (2005) Injury of the coronary endothelium at implantation increases endothelial dysfunction and intimal hyperplasia after heart transplantation. J Heart Lung Transplant 24:251–258

    PubMed  Google Scholar 

  111. Hollenberg SM, Klein LW, Parrillo JE et al (2001) Coronary endothelial dysfunction after heart transplantation predicts allograft vasculopathy and cardiac death. Circulation 104:3091–3096

    PubMed  CAS  Google Scholar 

  112. Treasure CB, Vita JA, Ganz P et al (1992) Loss of the coronary microvascular response to acetylcholine in cardiac transplant patients. Circulation 86:1156–1164

    PubMed  CAS  Google Scholar 

  113. Kubrich M, Petrakopoulou P, Kofler S et al (2008) Impact of coronary endothelial dysfunction on adverse long-term outcome after heart transplantation. Transplantation 85:1580–1587

    PubMed  Google Scholar 

  114. Weis M, Pehlivanli S, von Scheidt W (2000) Heart allograft endothelial cell dysfunction. Cause, course, and consequences. Z Kardiol 89(Suppl 9):IX/58–62

    PubMed  Google Scholar 

  115. Vanhoutte PM (1997) Endothelial dysfunction and atherosclerosis. Eur Heart J 18 (Suppl E):E19–E29

    PubMed  Google Scholar 

  116. Harrison DG (1997) Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest 100:2153–2157

    PubMed  CAS  Google Scholar 

  117. Perrault LP, Malo O, Bidouard JP et al (2003) Inhibiting the NO pathway with intracoronary L-NAME infusion increases endothelial dysfunction and intimal hyperplasia after heart transplantation. J Heart Lung Transplant 22:439–451

    PubMed  Google Scholar 

  118. Drexler H, Fischell TA, Pinto FJ et al (1994) Effect of L-arginine on coronary endothelial function in cardiac transplant recipients. Relation to vessel wall morphology. Circulation 89:1615–1623

    PubMed  CAS  Google Scholar 

  119. Liu Z, Wildhirt SM, Weismuller S et al (1998) Nitric oxide and endothelin in the development of cardiac allograft vasculopathy. Potential targets for therapeutic interventions. Atherosclerosis 140:1–14

    PubMed  CAS  Google Scholar 

  120. Giraldez RR, Panda A, Xia Y et al (1997) Decreased nitric-oxide synthase activity causes impaired endothelium-dependent relaxation in the postischemic heart. J Biol Chem 272:21420–21426

    PubMed  CAS  Google Scholar 

  121. Ohara Y, Peterson TE, and Harrison DG (1993) Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 91:2546–2551

    PubMed  CAS  Google Scholar 

  122. Lee PC, Wang ZL, Qian S et al (2000) Endothelial nitric oxide synthase protects aortic allografts from the development of transplant arteriosclerosis. Transplantation 69:1186–1192

    PubMed  CAS  Google Scholar 

  123. Iwata A, Sai S, Nitta Y et al (2001) Liposome-mediated gene transfection of endothelial nitric oxide synthase reduces endothelial activation and leukocyte infiltration in transplanted hearts. Circulation 103:2753–2759

    PubMed  CAS  Google Scholar 

  124. Iwata A, Sai S, Moore M et al (2000) Gene therapy of transplant arteriopathy by liposome-mediated transfection of endothelial nitric oxide synthase. J Heart Lung Transplant 19:1017–1028

    PubMed  CAS  Google Scholar 

  125. Vejlstrup NG, Andersen CB, Boesgaard S et al (2002) Temporal changes in myocardial endothelial nitric oxide synthase expression following human heart transplantation. J Heart Lung Transplant 21:211–216

    PubMed  Google Scholar 

  126. Weis M, Wildhirt SM, Schulze C et al (2000) Coronary vasomotor dysfunction in the cardiac allograft: impact of different immunosuppressive regimens. J Cardiovasc Pharmacol 36:776–784

    PubMed  CAS  Google Scholar 

  127. Wildhirt SM, Weis M, Schulze C et al (2001) Expression of endomyocardial nitric oxide synthase and coronary endothelial function in human cardiac allografts. Circulation 104:I336–343

    PubMed  CAS  Google Scholar 

  128. Lafond-Walker A, Chen CL, Augustine S et al (1997) Inducible nitric oxide synthase expression in coronary arteries of transplanted human hearts with accelerated graft arteriosclerosis. Am J Pathol 151:919–925

    PubMed  CAS  Google Scholar 

  129. Akyurek LM, Fellstrom BC, Yan ZQ et al (1996) Inducible and endothelial nitric oxide synthase expression during development of transplant arteriosclerosis in rat aortic grafts. Am J Pathol 149:1981–1990

    PubMed  CAS  Google Scholar 

  130. Mannon RB, Roberts K, Ruiz P et al (1999) Inducible nitric oxide synthase promotes cytokine expression in cardiac allografts but is not required for efficient rejection. J Heart Lung Transplant 18:819–827

    PubMed  CAS  Google Scholar 

  131. Lou H, Kodama T, Wang YN et al (1996) L-arginine prevents heart transplant arteriosclerosis by modulating the vascular cell proliferative response to insulin-like growth factor-I and interleukin-6. J Heart Lung Transplant 15:1248–1257

    PubMed  CAS  Google Scholar 

  132. Ouyang J, Xu D, Zhang X et al (2005) Effect of a novel inducible nitric oxide synthase inhibitor in prevention of rat chronic aortic rejections. Transplantation 79:1386–1392

    PubMed  CAS  Google Scholar 

  133. Winlaw DS, Schyvens CG, Smythe GA et al (1995) Selective inhibition of nitric oxide production during cardiac allograft rejection causes a small increase in graft survival. Transplantation 60:77–82

    PubMed  CAS  Google Scholar 

  134. Yang X, Chowdhury N, Cai B et al (1994) Induction of myocardial nitric oxide synthase by cardiac allograft rejection. J Clin Invest 94:714–721

    PubMed  CAS  Google Scholar 

  135. Ravalli S, Albala A, Ming M et al (1998) Inducible nitric oxide synthase expression in smooth muscle cells and macrophages of human transplant coronary artery disease. Circulation 97:2338–2345

    PubMed  CAS  Google Scholar 

  136. Koglin J, Glysing-Jensen T, Mudgett JS et al (1998) Exacerbated transplant arteriosclerosis in inducible nitric oxide-deficient mice. Circulation 97:2059–2065

    PubMed  CAS  Google Scholar 

  137. Shears LL, Kawaharada N, Tzeng E et al (1997) Inducible nitric oxide synthase suppresses the development of allograft arteriosclerosis. J Clin Invest 100:2035–2042

    PubMed  CAS  Google Scholar 

  138. Lee PC, Shears LL, 2nd, Billiar TR (1999) Role of inducible nitric oxide synthase in transplant arteriosclerosis. Clin Exp Pharmacol Physiol 26:1013–1015

    PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.J. Kuhlencordt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padmapriya, P., Kuhlencordt, P. Therapeutisches Potenzial der Stickstoffmonoxid-Synthase-Isoformen in Restenose, Transplantat- und Bypassarteriosklerose. Gefässchirurgie 14, 108–117 (2009). https://doi.org/10.1007/s00772-008-0668-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00772-008-0668-7

Schlüsselwörter

Keywords

Navigation