Skip to main content

Advertisement

Log in

Zerebrale Protektion während offen-chirurgischer Rekonstruktionen des Aortenbogens

Cerebral protection during open surgical reconstruction of the aortic arch

  • Leitthema
  • Published:
Gefässchirurgie Aims and scope Submit manuscript

Zusammenfassung

Die chirurgische Behandlung thorakaler Aortenaneurysmen und -dissektionen, die den Aortenbogen mit einbeziehen, sind nach wie vor eine Herausforderungen in der Gefäßchirurgie. Vor allem der Schutz des Gehirns und des Rückenmarks vor ischämischen und embolischen Komplikationen, die Vermeidung von Gerinnungsstörungen und Blutungen sowie die Prävention einer myokardialen Schädigung während der extrakorporalen Zirkulation gehören zu den primären chirurgischen Zielen.

Verschiedene Techniken wie die tiefe Hypothermie mit Kreislaufstillstand, die retrograde zerebrale Perfusion über die V. cava superior wie auch die selektive antegrade Gehirnperfusion sind in den klinischen Alltag eingeführt worden, um das zentrale Nervensystem vor ischämischen Schäden während der Dauer der Aortenbogenrekonstruktion zu schützen. Trotz aller Vorzüge der protektiven Methoden kommt es jedoch noch relativ häufig zu ischämischen Gehirnkomplikationen. Die Kenntnisse über die Vor- und Nachteile der drei Techniken sowie über die pathophysiologischen Konsequenzen der tiefen Hypothermie sollten bei der Entscheidung über die Indikation eines Kreislaufstillstands wie auch dessen Dauer mitwirken.

Abstract

The surgical treatment of thoracic aorta aneurysms and dissections which include the aortic arch, are still a great challenge in vascular surgery. The primary aims of surgery are protection of the brain and the spinal column from ischemic and embolic complications, avoidance of coagulation disorders and hemorrhaging as well as the prevention of myocardial damage during extracorporeal circulation.

Various techniques have been included in the clinical routine in order to protect the central nervous system from ischemic damage during aortic arch reconstruction. These include deep hypothermia with circulation arrest, retrograde cerebral perfusion via the superior vena cava as well as selective antegrade cerebral perfusion. Despite all advantages of these protective methods ischemic cerebral complications are still relatively common. Knowledge on the advantages and disadvantages of the three techniques as well as the pathophysiological consequences of deep hypothermia should be included in decision making on the indications for circulation arrest and the duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Bachet J, Guilmet D (2002) Brain protection during surgery of the aortic arch. J Card Surg 17:115–124

    Article  PubMed  Google Scholar 

  2. Bachet J, Guilmet D, Goudot B et al (1991) Cold cerebroplegia. A new technique of cerebral protection during operations on the transverse aortic arch. J Thorac Cardiovasc Surg 102:85–93

    PubMed  CAS  Google Scholar 

  3. Bachet J, Guilmet D, Goudot B et al (1999) Antegrade cerebral perfusion with cold blood: a 13-year experience. Ann Thorac Surg 67:1874–1878

    Article  PubMed  CAS  Google Scholar 

  4. Bellinger DC, Wernovsky G, Rappaport LA et al (1991) Cognitive development of children following early repair of transposition of the great arteries using deep hypothermic circulatory arrest. Pediatrics 87:701–707

    PubMed  CAS  Google Scholar 

  5. Bloodwell RD, Hallman GL, COOLEY DA (1968) Total replacement of the aortic arch and the „subclavian steal“ phenomenon. Ann Thorac Surg 5:236–245

    PubMed  CAS  Google Scholar 

  6. Bonser RS, Wong CH, Harrington D et al (2002) Failure of retrograde cerebral perfusion to attenuate metabolic changes associated with hypothermic circulatory arrest. J Thorac Cardiovasc Surg 123:943–950

    Article  PubMed  CAS  Google Scholar 

  7. Cooley DA, DE Bakey ME (1956) Resection of entire ascending aorta in fusiform aneurysm using cardiac bypass. J Am Med Assoc 162:1158–1159

    PubMed  CAS  Google Scholar 

  8. Cooper WA, Duarte IG, Thourani VH et al (2000) Hypothermic circulatory arrest causes multisystem vascular endothelial dysfunction and apoptosis. Ann Thorac Surg 69:696–702

    Article  PubMed  CAS  Google Scholar 

  9. Coselli JS (1997) Retrograde cerebral perfusion is an effective means of neural support during deep hypothermic circulatory arrest. Ann Thorac Surg 64:908–912

    Article  PubMed  CAS  Google Scholar 

  10. Crawford ES, Saleh SA (1981) Transverse aortic arch aneurysm: improved results of treatment employing new modifications of aortic reconstruction and hypothermic cerebral circulatory arrest. Ann Surg 194:180–188

    Article  PubMed  CAS  Google Scholar 

  11. Czerny M, Fleck T, Zimpfer D et al (2003) Risk factors of mortality and permanent neurologic injury in patients undergoing ascending aortic and arch repair. J Thorac Cardiovasc Surg 126:1296–1301

    Article  PubMed  Google Scholar 

  12. DE Bakey ME, Crawford ES, Cooley DA, Morris GC Jr (1957) Successful resection of fusiform aneurysm of aortic arch with replacement by homograft. Surg Gynecol Obstet 105:657–664

    Google Scholar 

  13. de Brux JL, Subayi JB, Pegis JD, Pillet J (1995) Retrograde cerebral perfusion: anatomic study of the distribution of blood to the brain. Ann Thorac Surg 60:1294–1298

    Article  Google Scholar 

  14. Di BR, Di EM, Pacini D et al (2001) Antegrade selective cerebral perfusion during surgery of the thoracic aorta: risk analysis. Eur J Cardiothorac Surg 19:765–770

    Article  Google Scholar 

  15. Di EM, Schepens MA, Morshuis WJ et al (2003) Brain protection using antegrade selective cerebral perfusion: a multicenter study. Ann Thorac Surg 76:1181–1188

    Article  Google Scholar 

  16. Dossche KM, Morshuis WJ, Schepens MA, Waanders FG (2000) Bilateral antegrade selective cerebral perfusion during surgery on the proximal thoracic aorta. Eur J Cardiothorac Surg 17:462–467

    Article  PubMed  CAS  Google Scholar 

  17. Dossche KM, Schepens MA, Morshuis WJ et al (1999) Antegrade selective cerebral perfusion in operations on the proximal thoracic aorta. Ann Thorac Surg 67:1904–1910

    Article  PubMed  CAS  Google Scholar 

  18. Dresser LP, McKinney WM (1987) Anatomic and pathophysiologic studies of the human internal jugular valve. Am J Surg 154:220–224

    Article  PubMed  CAS  Google Scholar 

  19. Duebener LF, Sakamoto T, Hatsuoka S et al (2001) Effects of hematocrit on cerebral microcirculation and tissue oxygenation during deep hypothermic bypass. Circulation 104:I260–I264

    Article  PubMed  CAS  Google Scholar 

  20. Ehrlich MP, McCullough JN, Zhang N et al (2002) Effect of hypothermia on cerebral blood flow and metabolism in the pig. Ann Thorac Surg 73:191–197

    Article  PubMed  Google Scholar 

  21. Ergin MA, Griepp EB, Lansman SL et al (1994) Hypothermic circulatory arrest and other methods of cerebral protection during operations on the thoracic aorta. J Card Surg 9:525–537

    Article  PubMed  CAS  Google Scholar 

  22. Fleck TM, Czerny M, Hutschala D et al (2003) The incidence of transient neurologic dysfunction after ascending aortic replacement with circulatory arrest. Ann Thorac Surg 76:1198–1202

    Article  PubMed  Google Scholar 

  23. Fox LS, Blackstone EH, Kirklin JW et al (1984) Relationship of brain blood flow and oxygen consumption to perfusion flow rate during profoundly hypothermic cardiopulmonary bypass. An experimental study. J Thorac Cardiovasc Surg 87:658–664

    PubMed  CAS  Google Scholar 

  24. Greeley WJ, Ungerleider RM, Smith LR, Reves JG (1989) The effects of deep hypothermic cardiopulmonary bypass and total circulatory arrest on cerebral blood flow in infants and children. J Thorac Cardiovasc Surg 97:737–745

    PubMed  CAS  Google Scholar 

  25. Greeley WJ, Kern FH, Ungerleider RM (1991) The effect of hypothermic cardiopulmonary bypass and total circulatory arrest on cerebral metabolism in neonates, infants, and children. J Thorac Cardiovasc Surg 101:783–794

    PubMed  CAS  Google Scholar 

  26. Griepp RB (2001) Cerebral protection during aortic arch surgery. J Thorac Cardiovasc Surg 121:425–427

    Article  PubMed  CAS  Google Scholar 

  27. Griepp RB, Stinson EB, Hollingsworth JF, Buehler D (1975) Prosthetic replacement of the aortic arch. J Thorac Cardiovasc Surg 70:1051–1063

    PubMed  CAS  Google Scholar 

  28. Griepp RB, Ergin MA, Lansman SL et al (1991) The physiology of hypothermic circulatory arrest. Semin Thorac Cardiovasc Surg 3:188–193

    PubMed  CAS  Google Scholar 

  29. Hagl C, Ergin MA, Galla JD et al (2001) Neurologic outcome after ascending aorta-aortic arch operations: effect of brain protection technique in high-risk patients. J Thorac Cardiovasc Surg 121:1107–1121

    Article  PubMed  CAS  Google Scholar 

  30. Harrington DK, Bonser M, Moss A et al (2003) Neuropsychometric outcome following aortic arch surgery: a prospective randomized trial of retrograde cerebral perfusion. J Thorac Cardiovasc Surg 126:638–644

    Article  PubMed  CAS  Google Scholar 

  31. Harrington DK, Fragomeni F, Bonser RS (2007) Cerebral perfusion. Ann Thorac Surg 83:S799–S804

    Article  PubMed  Google Scholar 

  32. Higami T, Kozawa S, Asada T et al (1999) Retrograde cerebral perfusion versus selective cerebral perfusion as evaluated by cerebral oxygen saturation during aortic arch reconstruction. Ann Thorac Surg 67:1091–1096

    Article  PubMed  CAS  Google Scholar 

  33. Hou YL, Shang TY, Wu YK (1964) Surgical treatment of aneurysm of thoracic aorta. Chin Med J (Engl) 83:741–749

    Google Scholar 

  34. Immer FF, Barmettler H, Berdat PA et al (2002) Effects of deep hypothermic circulatory arrest on outcome after resection of ascending aortic aneurysm. Ann Thorac Surg 74:422–425

    Article  PubMed  Google Scholar 

  35. Jacobs MJ, de Mol BA, Veldman DJ (2001) Aortic arch and proximal supraaortic arterial repair under continuous antegrade cerebral perfusion and moderate hypothermia. Cardiovasc Surg 9:396–402

    Article  PubMed  CAS  Google Scholar 

  36. Kazui T, Inoue N, Yamada O, Komatsu S (1992) Selective cerebral perfusion during operation for aneurysms of the aortic arch: a reassessment. Ann Thorac Surg 53:109–114

    PubMed  CAS  Google Scholar 

  37. Kazui T, Washiyama N, Muhammad BA et al (2001) Improved results of atherosclerotic arch aneurysm operations with a refined technique. J Thorac Cardiovasc Surg 121:491–499

    Article  PubMed  CAS  Google Scholar 

  38. Kuntschen FR, Galletti PM, Hahn C (1986) Glucose-insulin interactions during cardiopulmonary bypass. Hypothermia versus normothermia. J Thorac Cardiovasc Surg 91:451–459

    PubMed  CAS  Google Scholar 

  39. Mault JR, Ohtake S, Klingensmith ME et al (1993) Cerebral metabolism and circulatory arrest: effects of duration and strategies for protection. Ann Thorac Surg 55:57–63

    PubMed  CAS  Google Scholar 

  40. Mezrow CK, Midulla PS, Sadeghi AM et al (1994) Evaluation of cerebral metabolism and quantitative electroencephalography after hypothermic circulatory arrest and low-flow cardiopulmonary bypass at different temperatures. J Thorac Cardiovasc Surg 107:1006–1019

    PubMed  CAS  Google Scholar 

  41. Mills NL, Ochsner JL (1980) Massive air embolism during cardiopulmonary bypass. Causes, prevention and management. J Thorac Cardiovasc Surg 80:708–717

    PubMed  CAS  Google Scholar 

  42. Moizumi Y, Motoyoshi N, Sakuma K, Yoshida S (2005) Axillary artery cannulation improves operative results for acute type a aortic dissection. Ann Thorac Surg 80:77–83

    Article  PubMed  Google Scholar 

  43. Moriyama Y, Iguro Y, Hisatomi K et al (2001) Thoracic and thoracoabdominal aneurysm repair under deep hypothermia using subclavian arterial perfusion. Ann Thorac Surg 71:29–32

    Article  PubMed  CAS  Google Scholar 

  44. O’Connor JV, Wilding T, Farmer P et al (1986) The protective effect of profound hypothermia on the canine central nervous system during one hour of circulatory arrest. Ann Thorac Surg 41:255–259

    Google Scholar 

  45. Okita Y, Takamoto S, Ando M et al (1998) Mortality and cerebral outcome in patients who underwent aortic arch operations using deep hypothermic circulatory arrest with retrograde cerebral perfusion: no relation of early death, stroke and delirium to the duration of circulatory arrest. J Thorac Cardiovasc Surg 115:129–138

    Article  PubMed  CAS  Google Scholar 

  46. Okita Y, Minatoya K, Tagusari O et al (2001) Prospective comparative study of brain protection in total aortic arch replacement: deep hypothermic circulatory arrest with retrograde cerebral perfusion or selective antegrade cerebral perfusion. Ann Thorac Surg 72:72–79

    Article  PubMed  CAS  Google Scholar 

  47. Pagano D, Boivin CM, Faroqui MH, Bonser RS (1996) Retrograde perfusion through the superior vena cava perfuses the brain in human beings. J Thorac Cardiovasc Surg 111:270–272

    Article  PubMed  CAS  Google Scholar 

  48. Pua HL, Bissonnette B (1998) Cerebral physiology in paediatric cardiopulmonary bypass. Can J Anaesth 45:960–978

    Article  PubMed  CAS  Google Scholar 

  49. Safi HJ, Brien HW, Winter JN et al (1993) Brain protection via cerebral retrograde perfusion during aortic arch aneurysm repair. Ann Thorac Surg 56:270–276

    Article  PubMed  CAS  Google Scholar 

  50. Strauch JT, Franke UF, Wahlers T (2006) Antegrade selective cerebral perfusion--how to proceed? Thorac Cardiovasc Surg 54:78–84

    Article  PubMed  CAS  Google Scholar 

  51. Svensson LG, Crawford ES, Hess KR et al (1993) Deep hypothermia with circulatory arrest. Determinants of stroke and early mortality in 656 patients. J Thorac Cardiovasc Surg 106:19–28

    PubMed  CAS  Google Scholar 

  52. Tanoue Y, Tominaga R, Ochiai Y et al (1999) Comparative study of retrograde and selective cerebral perfusion with transcranial Doppler. Ann Thorac Surg 67:672–675

    Article  PubMed  CAS  Google Scholar 

  53. Ueda Y, Okita Y, Aomi S et al (1999) Retrograde cerebral perfusion for aortic arch surgery: analysis of risk factors. Ann Thorac Surg 67:1879–1882

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jacobs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mommertz, G., Langer, S., Koeppel, T. et al. Zerebrale Protektion während offen-chirurgischer Rekonstruktionen des Aortenbogens. Gefässchirurgie 14, 92–99 (2009). https://doi.org/10.1007/s00772-008-0663-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00772-008-0663-z

Schlüsselwörter

Keywords

Navigation