Skip to main content

Advertisement

Log in

Thrombophile Gerinnungsstörungen bei peripherer arterieller Verschlusskrankheit

Mit besonderer Berücksichtigung der rekonstruktiven Gefäßchirurgie

Disturbances of coagulation predisposing to thrombosis in peripheral arterial occlusive disease

With special reference to reconstructive vascular surgery

  • Leitthema
  • Published:
Gefässchirurgie Aims and scope Submit manuscript

Zusammenfassung

Die Atherosklerose mit ihren klassischen Risikofaktoren ist für die Entstehung von arteriellen Thrombosen bei peripherer arterieller Verschlusskrankheit (pAVK) und bei Bypassverschlüssen von vorrangiger Bedeutung. Thrombophile Gerinnungsstörungen können das Thromboserisiko zusätzlich begünstigen. Zahlreiche Studien legen einen gewissen Zusammenhang zwischen einzelnen oder mehreren Gerinnungsdefekten und einer Progredienz der arteriellen Verschlusskrankheit bzw. einem Bypassverschluss nahe, wobei unter allen Einzelfaktoren des Gerinnungssystems dem Fibrinogen die größte Bedeutung bezüglich der Schwere und Progredienz von arteriellen Gefäßverschlüssen eingeräumt wird.

Ein eindeutiger kausaler Zusammenhang ist aber noch nicht bewiesen. Die Ergebnisse sind für ein und denselben Parameter oft widersprüchlich. Die Studiendesigns sind zu heterogen und die Fallzahlen zu klein. Es fehlen größere prospektive randomisierte Studien, die ein verbessertes Ergebnis für gefährdete Patienten nach spezieller medikamentöser therapeutischer Intervention belegen. Homocystein und Antiphospholipid-Antikörper (APL-AK) erscheinen besonders gut geeignet für entsprechende Studien, da hierbei mit einer Vitaminsupplementation bzw. mit speziellen antikoagulatorischen Therapieregimes gezielte medikamentöse Interventionsmöglichkeiten zur Verfügung stehen.

Abstract

Atherosclerosis, with its classic risk factors, has an extremely important place in the development of arterial thromboses in the presence of peripheral arterial occlusive disease (PAOD) and of bypass occlusions. Thrombophilic disturbances of coagulation can compound the risk of thrombosis further. Numerous studies provide a warning that there may be some connection between single or multiple coagulation defects and progression of arterial occlusive disease and/or occlusion of a bypass, fibrinogen being considered the most significant of all the individual risk factors with respect to severity and progression.

However, no unequivocal causal connection has so far been confirmed. The results for one and the same parameter are frequently contradictory. The study designs vary too widely, and the case numbers are too low. No large prospective randomized studies are available documenting better results for at-risk patients following specific drug interventions. Homocysteine and antiphospholipid antibodies (APL Ab) appear to be particularly suitable for use in corresponding studies, as these would mean that with vitamin supplementation and/or specific anticoagulant regimens targeted medicamentous treatment options are available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Aleksic M, Jahn P, Heckenkamp J et al. (2005) Comparison of the prevalence of APC-resistance in vascular patients and in a normal population cohort in Western Germany. Eur J Vasc Endovasc Surg 30: 160–163

    Article  PubMed  Google Scholar 

  2. Bertina RM (1999) Molecular risk factors for thrombosis. Thromb Haemost 82: 601–609

    PubMed  Google Scholar 

  3. Bertina RM, Koeleman BP, Koster T et al. (1994) Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 369: 64–67

    Article  PubMed  Google Scholar 

  4. Böhm G, Al-Khaffaf H (2002) Thrombophilia and arterial disease. Int Angiol 22: 116–124

    Google Scholar 

  5. Boushey CJ, Beresford SAA, Omenn GS, Motulsky AG (1995) A quantitative assessment of plasma homocysteine as a risk factor for vascular disease: probable benefits of increasing folic acid intakes. JAMA 274: 1049–1057

    Article  PubMed  Google Scholar 

  6. Bowie EJ, Thompson JH, Pascuzzi et al. (1963) Thrombosis in systemic lupus erythematodes despite circulating anticoagulants. J Lab Clin Med 62: 416–430

    PubMed  Google Scholar 

  7. British Society for Haematology (1990) Guidelines on the investigation and management of thrombophilia. J Clin Path 43: 703–710

    PubMed  Google Scholar 

  8. Burns PJ, Mosquera DA, Bradbury AW (2001) Prevalence and significance of thrombophilia in peripheral arterial disease. Eur J Vasc Endovasc Surg 22: 98–106

    Article  PubMed  Google Scholar 

  9. Cattaneo M (1999) Hyperhomocysteinemia, atherosclerosis and thrombosis. Thromb Haemost 81: 165–176

    PubMed  Google Scholar 

  10. Christen WG, Ajani UA, Glynn RJ et al. (2000) Blood levels of homocysteine and increased risks of cardiovascular disease. Causal or casual? Arch Intern Med 160: 422–434

    Article  PubMed  Google Scholar 

  11. Currie IC, Wilson YG, Scott J et al. (1996) Homocysteine: an independent risk factor for the failure of vascular intervention. Br J Surg 83: 1238–1241

    Article  PubMed  Google Scholar 

  12. Deloughery TG, Evans A, Sadeghi A et al. (1996) Common mutation in methylentetrahydrofolate reductase. Correlation with homocysteine metabolism and late-onset vascular disease. 94: 3074–3078

  13. Dormandy JA, Rutherford RB, TASC Working Group (TransAtlantic Inter-Society Concensus, TASC) (2000) Management of peripheral arterial disease (PAD). J Vasc Surg 31: 1–296

    Article  PubMed  Google Scholar 

  14. Ebbesen LS (2004) Hyperhomocysteinemia, thrombosis and vascular biology. Cell Mol Biol 50: 917–930

    Google Scholar 

  15. Egerton W, Silberberg J, Crooks R et al. (1996) Serial measures of plasma homocysteine after acute myocardial infarcion. Am J Cardiol 77: 759–761

    Article  PubMed  Google Scholar 

  16. Fisher CM, Tew K, Appleberg M (1999) Prevalence and outcome of activated protein C resistance in patients after peripheral arterial bypass grafts. Cardiovasc Surg 7: 519–525

    Article  PubMed  Google Scholar 

  17. Foley PWX, Irvine CD, Standen GR et al. (1997) Activated protein C resistance, factor V Leiden and peripheral vascular disease. Cardiovasc Surg 5: 157–160

    Article  PubMed  Google Scholar 

  18. Folsom AR (2001) Hemostatic risk factors for atherothrombotic disease: an epidemiologic view. Thromb Haemost 86: 366–373

    PubMed  Google Scholar 

  19. Gezer S (2003) Antiphospholipid syndrome. Dis Mon 49:696–741

    Article  PubMed  Google Scholar 

  20. Ginsburg D (2005) Genetic risk factors for arterial thrombosis and inflammation. Hematology 2005: 442–444

    Article  Google Scholar 

  21. Griffin JH, Evatt B, Widemann C, Fernandez JA. (1993) Anticoagulant protein C pathway defective in a majority of thrombophilic patients. Blood 82: 1989–1993

    PubMed  Google Scholar 

  22. Hach-Wunderle V (2002) Hämostaseologisches Risikoprofil bei Venenthrombose. Internist 43: 10–15

    Article  PubMed  Google Scholar 

  23. Hamer JD, Ashton F, Meynell MJ. (1973) Factors influencing prognosis in the surgery of peripheral vascular disease: platelet adhesiveness, plasma fibrinogen, and fibrinolysis. Br J Surg 60: 386–389

    PubMed  Google Scholar 

  24. Hansrani M, Stansby G (2002) Homocysteine lowering interventions for peripheral arterial disease and bypass grafts (review). The Cochrane Database of Systemic Reviews 2002, issue 3. Art.No.: CD 003285

  25. Heinrich J, Balleisen L, Schulte H et al. (1994) Fibrinogen and factor VII in the prediction of coronary risk: results from the PROCAM study in healthy men. Arteriosler Thromb 14: 54–59

    Google Scholar 

  26. Jacques PF, Selhub J, Bostom AG et al. (1999) The effect of folic acid fortification on plasma folate and total homocysteine concentrations. N Engl J Med 340: 1449–1454

    Article  PubMed  Google Scholar 

  27. Kibbe MR, Cortese Hassett AL, McSherry F et al. (2002) Can screening for genetic markers improve peripheral artery bypass patency? J Vasc Surg 36: 1198–1206

    Article  PubMed  Google Scholar 

  28. Kiechl S, Muigg A, Santer P et al. (1999) Poor response to activated protein C as a prominent risk predictor of advanced atherosclerosis and arterial disease. Circulation 99: 614–619

    PubMed  Google Scholar 

  29. Köppel H, Renner W, Krippl TC et al. (2004) Diminished response to activated protein C is not correlated with severity of peripheral arterial occlusive disease. Clin Lab 50: 689–693

    PubMed  Google Scholar 

  30. Koster T, Rosendaal F, de Ronde H et al. (1993) Venous thrombosis due to poor anticoagulant response to activated protein C: Leiden Thrombophilia Study. Lancet 342: 1503–1506

    Article  PubMed  Google Scholar 

  31. Lam EY, Taylor LM, Landry GJ et al (2001) Relationship between antiphospholipid antibodies and progression of lower extremity arterial occlusive disease after lower extremity bypass operations. J Vasc Surg 33: 976–982

    Article  Google Scholar 

  32. Lange S, Trampisch HJ, Haberl R et al. (2005) Excess 1-year cardiovascular risk in elderly primary care patients with a low ankle-brachial index (ABI) and high homocysteine level. Atherosclerosis 178: 351–357

    Article  PubMed  Google Scholar 

  33. Lee RW, Taylor LM, Landry GJ et al. (1996) Prospective comparison of infrainguinal bypass grafting in patients with and without antiphospholipid antibodies. J Vasc Surg 24: 524–533

    Article  PubMed  Google Scholar 

  34. Lim W, Crowther MA, Eikelboom JW (2006) Management of antiphospholipid antibody syndrome: a systematic review. JAMA 295: 1050–1057

    Article  PubMed  Google Scholar 

  35. Lindgren A, Brättstrom L, Norrving B et al. (1995) Plasma homocysteine in the acute and convalescent phases after stroke. Stroke 26:795–800

    PubMed  Google Scholar 

  36. Mager A, Lalezari S, Shohat T et al. (1999) Methylentetrahydrofolate reductase genotypes and early-onset coronary artery disease. Circulation 100: 2406–2410

    PubMed  Google Scholar 

  37. Meade TW, Mellows S, Brozovic M et al. (1986) Haemostatic function and ischaemic heart disease: principal results of the Northwick Park Heart Study. Lancet 2: 533–537

    Article  PubMed  Google Scholar 

  38. Moghadasian MH, McManus BM, Frohlich JJ. (1997) Homocysteine and coronary artery disease. Clinical evidence and genetic and metabolic background. Arch Intern Med 157: 2299–2308

    Article  PubMed  Google Scholar 

  39. Mueller T, Marschon R, Dieplinger B et al. (2005) Factor V Leiden, prothrombin G20210A, and methylentetrahydrofolate reductase C677T mutations are not associated with chronic limb ischemia: the Linz Peripheral Arterial Disease (LIPAD) study. J Vasc Surg 41: 808–815

    Article  PubMed  Google Scholar 

  40. Nicoloff AD, Taylor LM, Sexton GJ et al. (2002) Relationship between site of initial symptoms and subsequent progression of disease in a prospective study of atherosclerosis progression in patients receiving long-term treatment for symptomatic peripheral arterial disease. J Vasc Surg 35: 38–46

    PubMed  Google Scholar 

  41. Ouriel K, Green RM, de Weese JA, Cimino C (1996) Activated protein C resistance: prevalence and implications in peripheral vascular disease. J Vasc Surg 23: 46–52

    Article  PubMed  Google Scholar 

  42. Poort SR, Rosendaal FR, Reitsma PH et al. (1996) A common genetic variation in the 3’-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 88: 3698–3703

    PubMed  Google Scholar 

  43. Reiner AP, Siscovick DS, Rosendaal FR (2001) Hemostatic risk factors and arterial thrombotic disease. Thromb Haemost 85: 584–595

    PubMed  Google Scholar 

  44. Reitsma PH (2004) Is hypercoagulability an issue in arterial thrombosis? No. J Thromb Haemost 2: 692–694

    Article  PubMed  Google Scholar 

  45. Renner W, Köppel H, Brodman M et al. (2000) Factor II G20210A and factor V G1691A gene mutations and peripheral arterial occlusive disease. Thromb Haemost 83: 20–22

    PubMed  Google Scholar 

  46. Rosendaal FR (1999) Risk factors for venous thrombotic disease. Thromb Haemost 82: 610–619

    PubMed  Google Scholar 

  47. Rosendaal FR, Siscovick DS, Schwartz SM et al. (1997) A common prothrombin variant (20210 G to A) increases the risk of myocardial infarction in young women. Blood 90: 1747–1750

    PubMed  Google Scholar 

  48. Rosendaal FR, Doggen CJM, Zivelin A et al. (1998) Geographic distribution of the 20210 G to A prothrombin variant. Thromb Haemost 79: 706–708

    PubMed  Google Scholar 

  49. Sampram ESK, Lindblad B (2001) The impact of factor V mutation on the risk for occlusion in patients undergoing peripheral vascular reconstructions. Eur J Vasc Endovasc Surg 22: 134–138

    Article  PubMed  Google Scholar 

  50. Sampram ESK, Lindblad B, Dahlbäck B (1998) Activated protein C resistance in patients with peripheral vascular disease. J Vasc Surg 28: 624–629

    Article  PubMed  Google Scholar 

  51. Schnyder G, Roffi M, Pin R et al. (2001) Decreased rate of coronary restenosis after lowering of plasma homocysteine levels. N Engl J Med 345: 1593–1600

    Article  PubMed  Google Scholar 

  52. Scarabin PY, Arveiler D, Amouyel P et al. (2003) Plasma fibrinogen explains much of the difference in risk of coronary heart disease between France and Northern Ireland. Atheroslerosis 166: 103–109

    Article  Google Scholar 

  53. Shi W, Krilis SA, Chong BH et al. (1990) Prevalence of lupus anticoagulant and anticardiolipin antibodies in a healthy population. Aust N Z J Med 20: 231–236

    PubMed  Google Scholar 

  54. Sofi F, Lari B, Rogolino A et al. (2005) Thrombophilic risk factors for symptomatic peripheral arterial disease. J Vasc Surg 41: 255–260

    Article  PubMed  Google Scholar 

  55. Svensson PJ, Dahlbäck B (1994) Resistance to activated protein C as a basis for venous thrombosis. N Engl J Med 330: 517–522

    Article  PubMed  Google Scholar 

  56. Taylor LM, Moneta GL, Sexton GJ et al. (1999) Prospective blinded study of the relationship between plasma homocysteine and progression of symptomatic peripheral arterial disease. J Vasc Surg 29: 8–21

    Article  PubMed  Google Scholar 

  57. Tribouilloy CM, Peltier M, Pertier I et al. (2000) Plasma homocysteine and severity of thoracic aortic atherosclerosis. Chest 118: 1685–1689

    Article  PubMed  Google Scholar 

  58. Toole JF, Malinow MR, Chambless LE et al. (2004) Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke, myocardial infarction, and death: the Vitamin Intervention for Stroke Prevention (VISP) randomized controlled trial. JAMA 291:565–575

    Article  PubMed  Google Scholar 

  59. Tzoulaki I, Murray GD, Price JF et al (2006) Hemostatic factors, inflammatory markers, and progressive peripheral atherosclerosis: the Edinburgh Artery Study. Am J Epidemiol 163: 334–341

    Article  PubMed  Google Scholar 

  60. Verhoef P, Kok FJ, Kluijtmans LA et al. (1997) The 677C->T mutation in the methylentetrahydrofolate reductase gene: associations with plasma total homocysteine levels and risk of coronary atherosclerotic disease. Atherosclerosis 132: 105–113

    Article  PubMed  Google Scholar 

  61. Vila P, Hernandez MC, Lopez-Fernandez MF, Battle J (1994) Prevalence, follow-up and clinical significance of the anticardiolipin antibodies in normal subjects. Thromb Haemost 72: 209–213

    PubMed  Google Scholar 

  62. Voetsch B, Loscalzo J. (2004) Genetic determinants of arterial thrombosis. Arterioscler Thromb Vasc Biol 24: 216–229

    Article  PubMed  Google Scholar 

  63. Welch GN, Loscalzo J (1998) Homocysteine and atherothrombosis. N Engl J Med 338: 1042–1045

    Article  PubMed  Google Scholar 

  64. Wisemann S, Kenchington G, Dain R et al (1989) Influence of smoking and plasma factors on the patency of femoropopliteal vein grafts. Br Med J 299: 643–646

    Google Scholar 

  65. Wisemann S, Powell JT, Greenhalgh RM et al. (1990) The influence of smoking and plasma factors on prosthetic graft pateny. Eur J Vasc Endovasc Surg 4: 57–61

    Google Scholar 

  66. Woodburn KR, Rumley A, Lowe GD et al. (1996) Clinical, biochemical, and rheologic factors affecting the outcome of infrainguinal bypass grafting. J Vasc Surg 24: 639–646

    Article  PubMed  Google Scholar 

  67. Wu O, Robertson L, Twaddle S et al. (2006) Screening for thrombophilia in high-risk situations: systematic review and cost-effectiveness analysis. The Thrombosis: Risk and Economic Assessment of Thrombophilia Screening (TREATS). Health Technol Assess 10: 1–110

    Google Scholar 

  68. Zotz RB, Scharf RE (2006 in press) Hämostasestörungen als Ursachen arterieller Thrombosen. In: Bruhn, Hach-Wunderle, Schambeck (Hrsg) Hämostaseologie. Schattauer, Stuttgart

Download references

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Hach-Wunderle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hach-Wunderle, V., Zegelman, M. & Hach, W. Thrombophile Gerinnungsstörungen bei peripherer arterieller Verschlusskrankheit. Gefässchirurgie 11, 325–333 (2006). https://doi.org/10.1007/s00772-006-0482-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00772-006-0482-z

Schlüsselwörter

Keywords

Navigation