Skip to main content

Advertisement

Log in

Mechanismen der arteriellen Restenose und Therapieansätze zur Prävention

Mechanisms of arterial restenosis and treatment strategies for its prevention

  • Übersicht
  • Published:
Gefässchirurgie Aims and scope Submit manuscript

Zusammenfassung

Sowohl gefäßchirurgische als auch endovaskuläre Interventionen bedingen ein Trauma der Gefäßwand, insbesondere des Endothels. Die Reaktion des Gefäßes, die sich in konstriktivem Remodelling und Neointimabildung äußert, ist weiterhin der limitierende Faktor kurativer Eingriffe. Das Einbringen von Stents verhindert zwar das konstriktive Remodelling, verstärkt aber die Bildung von Neointima, die hauptverantwortlich für die In-Stent-Restenosen ist. Neointima bildet sich als Reaktion auf Thrombosierung, lokale Entzündung und medio-intimale Verletzungen nach Ballondilatation im Bereich arterieller Anastomosen oder Fogarty-Manöver. Derzeit konzentriert sich die Prävention der Restenose auf die Reduzierung der Neointimabildung durch beschichtete Stents, deren Vorreiter die Taxus- und Cypherstents darstellen. Daneben sind weitere experimentelle Ansätze aktuell Gegenstand der Forschung, um neue Therapieansätze zu etablieren und das Problem von Neointimabildung, Thrombose und konstriktivem Remodelling zu lösen. Dazu zählen neben lokaler und systemischer Pharmakotherapie, Brachy- und Lasertherapie auch gentherapeutische Ansätze, die aktuell in experimentellen und ersten klinischen Studien untersucht werden. Die selektive, gleichzeitige, eventuell sogar polyphasische Regulation verschiedener, an der Restenoseentwicklung beteiligter Gene könnte in Zukunft eine weitere Optimierung der Restenoseprävention ermöglichen.

Abstract

Both vascular surgery and endovascular interventions traumatise the arterial wall, especially the endothelium. The vessel responds with neointimal hyperplasia and/or constrictive remodelling, and this is still the limiting factor in curative interventions. Stent placement prevents constrictive remodelling but is the main trigger for in-stent restenosis. Hyperproliferation of neointimal tissue is the main response to arterial thrombosis, local inflammation or medio-intimal injury such as occurs, for example, after balloon dilatation in the region of arterial anastomoses or of a thrombectomy (Fogarty-manoeuvre). At present, research on prevention of restenosis is focused on inhibiting neointimal hyperproliferation by using drug-eluting stents, and especially sirolimus- or paclitaxel-eluting stents. In addition, further experimental research work is in progress, with the aim of esablishing new treatment regimens and solving the problem of neointimal formation, thrombosis and constrictive remodelling. These include both local and systemic pharmacological therapy, brachy- and laser therapy, and many genetic treatment options, some of which are currently the subjects of experimental studies and early-stage clinical trials. Gene therapy seems like a promising way of preventing restenosis, but has not yet been tested in clinical trials. In the near future, selective, simultaneous, and perhaps even polyphasic regulation for gene silencing of two or more genes involved in the development of restenosis could improve the long-term patency rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Bertrand ME, Rupprecht HJ, Urban P, Gershlick AH, CLASSIC investigators (2000) Double-blind study of the safety of clopidogrel with an without a loading dose in combination with aspirin compared with ticlopidine in combination with aspirin after coronary stenting. Circulation 102: 624–629

    PubMed  Google Scholar 

  2. Cagiannos C, Abul-Khoudoud OR, DeRijk W et al. (2005) Rapamycin-coated expanded polytetrafluoroethylene bypass grafts exhibit decreased anastomotic neointimal hyperplasia in a porcine model. J Vasc Surg 42(5): 980–988

    Article  PubMed  Google Scholar 

  3. Correa GA, Zacchigna S, Arsic N et al. (2004) Potent Inhibition of Arterial Intimal Hyperplasia by TIMP1 Gene Transfer using AAV Vectors. Mol Ther 9(6): 876–884

    Article  PubMed  Google Scholar 

  4. Edmondson RA, Cohen AT, Das SK et al. (1994) Low-molecular weight heparin versus aspirin and dipyridamole after femoropopliteal bypass grafting. Lancet 344: 914–918

    Article  PubMed  Google Scholar 

  5. Farb A, Heller PF, Shroff S (2001) Pathological analysis of local delivery of Paclitaxel via a polymer-coated stent. Circulation 104: 473–479

    PubMed  Google Scholar 

  6. Heldman AW, Cheng L, Jenkins GM (2001) Paclitaxel stent coating inhibits neointimal hyperplasia at 4 weeks in a porcine model of coronary restenosis. Circulation 103: 2289–2295

    PubMed  Google Scholar 

  7. Hoffmann R, Mintz GS (2000) Coronary in-stent restenosis-predictors, treatment and prevention. Eur Heart J 21: 1739–1749

    Article  PubMed  Google Scholar 

  8. Hutter R, Carrick FE, Valdiviezo C et al. (2004) Vascular endothelial growth factor regulates reendothelialization and neointima formation in a mouse model of arterial injury. Circulation 110: 2430–2435

    Article  PubMed  Google Scholar 

  9. Ishikawa T, Hatakeyama K, Imamura T (2003) Involvement of C-reactive protein obtained by directional coronary atherectomy in plaque instabilit and developing restenosis in patients with stable or unstable angina pectoris. Am J Cardiol 91: 281–292

    Article  Google Scholar 

  10. Johnson TW, Wu YX, Herdeg C et al. (2005) Stent-based delivery of tissue inhibitor of MMP-3 adenovirus inhibits neointimal formation in porcine coronary arteries. Arterioscler Thromb Vasc Biol 25: 754–759

    Article  PubMed  Google Scholar 

  11. Karsch KR, Preisack MB, Beildon R, Eschenfelder V (1996) Low-molecular weight heparin (reviparin) in percoutaneus transluminal coronary angioplasty: results of a randomized double-blind, unfractionated heparin and placebo-controlled, multicenter trail (REDUCE trail). J Am Coll Cardiol 28: 1437–1443

    Article  PubMed  Google Scholar 

  12. Khurana R, Zhuang Z, Bhardwaj S et al. (2004) Angiogenesis-dependent and independent phases of intimal hyperplasia. Circulation 110: 2436–2443

    Article  PubMed  Google Scholar 

  13. Klugherz BD, Llanos G, Lieuallen W (2002) Twenty-eight-day efficacy and pharmcokinetics of the sirolimus-eluting stent. Coron Artery Dis 13(3): 183–188

    Article  PubMed  Google Scholar 

  14. Kopp CW, de Martin R (2004) Gene therapy approaches for the prevention of restenosis. Curr Vasc Pharmacol 2: 183–189

    Article  PubMed  Google Scholar 

  15. Kubota Y, Kichikawa K, Uchida H, Maeda M (1995) Pharmacologic treatment of intimal hyperplasia after metallic stent placement in the peripheral arteries. Invest Radiol 30: 532–537

    PubMed  Google Scholar 

  16. Kuehnl A, Pelisek J, Tian W et al. (2005) C-type natriuretic peptide inhibits constrictive remodelling without compromising re-endothelialization in ballon-dilated renal arteries. J Endovasc Ther 12: 171–182

    Article  PubMed  Google Scholar 

  17. Langeveld B, Roks AJ, Tio RA, Voors AA (2005) Renin-angiotensin system intervention to prevent in-stent restenosis. J Cardiovasc Pharmacol 45: 88–98

    Article  PubMed  Google Scholar 

  18. Larena-Avellaneda A, Franke S (2004) Die Intimahyperplasie – Bedeutung für den Gefäßchirurgen und therapeutische Möglichkeiten. Gefäßchirurgie 9: 89–95

    Google Scholar 

  19. Liistro F, Colombo A (2001) Late acute thrombosis after paclitaxel eluting stent implantation. Heart 86(3): 262–264

    Article  PubMed  Google Scholar 

  20. Liistro F, Stankovis G, Di Mario C (2002) First clinical experience with a paclitaxel derivative-eluting polymer stent system implantation for in-stent restenosis: immediate and long-term clinical and angiographic outcome. Circulation 105(16): 1883–1886

    Article  PubMed  Google Scholar 

  21. Minar E, Pokrajac B, Maca T et al. (2000) Endovascular brachytherapy for prophylaxis of restenosis after femoropopliteal angioplasty. Circulation 102: 2694–2699

    PubMed  Google Scholar 

  22. Ohtake H, Urayama H, Kimura K, Yokoi K (1997) Comparison of cilostazol with warfarin as antithrombotic therapy after femoro-popliteal bypass surgery using an ePTFE graft. Minerv Cardioangiol 45: 527–530

    Google Scholar 

  23. Ohtani K, Egashira K, Hiasa KI et al. (2004) Blockade of VEGF suppresses experimental restenosis after intraluminal injury by inhibiting recruitment of monocyte lineage cells. Circulation 110(2444): 2452

    Article  Google Scholar 

  24. Pelisek J, Fuchs A, Kuehnl A et al. (2006) C-type natriuretic peptide for reduction of restenosis: gene transfer is superior over singe peptide administration. J Gene Med (in print)

  25. Pelisek J, Kuehnl A, Fuchs A et al. (2004) Functional analysis of genomic DNA, cDNA and nucleotide sequence of the mature C-type natriuretic peptide gene in vascular cells. Arterioscl Thromb Vasc Biol 24(9): 1646–1651

    Article  PubMed  Google Scholar 

  26. Puhakka HL, Turunen P, Rutanen J et al. (2005) Tissue Inhibitor of MMP-1 adenoviral gene therapy alone is equally effective in reducing restenosis as combination gene therapy in a rabbit restenosis model. J Vasc Res 42: 361–367

    Article  PubMed  Google Scholar 

  27. Reilly JP, Ramee SR (2004) Vacular brachytherapy in renal artery restenosis. Curr Opin Cardiol 19: 332–335

    Article  PubMed  Google Scholar 

  28. Rockson SG, Lorenz DP, Cheong WF, Woodburn KW (2000) Photoangioplasty: an emerging clinical cardiovascular role for photodynamic therapy. Circulation 102: 591–596

    PubMed  Google Scholar 

  29. Rutanen J, Turunen AM, Teittinen M et al. (2005) Gene transfer using the mature form of VEGF-D reduces neointimal thickening through nitric oxide-dependent mechnism. Gene Ther 12(12): 980–987

    Article  PubMed  Google Scholar 

  30. Schainfeld RM (2002) Potential emerging therapeutic strategies to prevent restenosis in the peripheral vasculature. Cardiovasc Intervent 56: 421–431

    Article  Google Scholar 

  31. Schwartz RS, Henry TD (2002) Pathophysiology of coronary artery restenosis. Rev Cardiovasc Med 3 [Suppl 5]: S4–S9

    PubMed  Google Scholar 

  32. Sheppard R, Eisenberg MJ, Donath D, Meerkin D (2003) Intracoronary brachytherapy for the prevention of restenosis after percutaneous coronary revascularization. Am Heart J 146(5): 775–786

    Article  PubMed  Google Scholar 

  33. Shiojuma I, Walsh K (2004) The role of vascular endothelial growth factor in restenosis – The controversy continues. Circulation 110: 2283–2286

    Article  PubMed  Google Scholar 

  34. Strecker EP, Gottmann D, Boos IB, Vetter S (1998) Low-molecular weight heparin (reviparin) reduce the incidence of femoropopliteal in-stent restenosis: preliminary results of an ongoing study. Cardiovasc Intervent Radiol 21: 375–379

    Article  PubMed  Google Scholar 

  35. Tepe G (2004) Brachytherapie und drug-eluting stents. Gefäßchirurgie 9: 96–104

    Google Scholar 

  36. The Iloprost Bypass International Study Group (1996) Effects of perioperative iloprost on patency of femorodistal bypass grafts. Eur J Vasc Endovasc Surg 12: 363–371

    Article  PubMed  Google Scholar 

  37. Touyz RM (2005) Intracellular mechanisms involved in vascular remodelling of resistance arteries in hypertension: role of angiotensin II. Exp Physiol 90(4): 449–455

    Article  PubMed  Google Scholar 

  38. Tsuchikane E, Kobayashi T, Awata N (2000) The potential of cilostazol in interventional cardiology. Curr Intervent Cardiol Rep 2: 143–148

    Google Scholar 

  39. Van der Giessen WJ, Lincoff M, Schwartz R (1996) Marked inflammatory sequelae to implantation of biodegradable and non-biodegradable polymers in porcine coronary arteries. Circulation 94: 1690–1697

    PubMed  Google Scholar 

  40. Waksman R (2000) Vascular brachytherapy: update on clinical trials. J Invas Cardiol 12 [Suppl A]: 18A-28A

    Google Scholar 

  41. Walter DH, Cejna M, Diaz-Sandoval L et al. (2004) Local gene transfer of phVEGF-2 plasmid by gene-eluting stents. Circulation 110: 36–45

    Article  PubMed  Google Scholar 

  42. Winslow RD, Sharma SK, Kim M (2005) Restenosis and drug-eluting stents. Mount Sinai J Med 72(2): 81–89

    Google Scholar 

  43. Yang Z, Eton D, Zheng F et al. (2005) Effect of tissue plasminogen activator on vascular smooth muscle cells. J Vasc Surg 42: 532–538

    Article  PubMed  Google Scholar 

  44. Yu H, Dai W, Yang Z et al. (2005) Neointimal hyperplasia on a cell-seeded PTFE graft is promoted by transfer of tissue plasminogen activator gene and inhibited by transfer of nitric oxide synthase gene. J Vasc Surg 41: 122–129

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kühnl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kühnl, A., Jauch, KW. & Kopp, R. Mechanismen der arteriellen Restenose und Therapieansätze zur Prävention. Gefässchirurgie 11, 347–355 (2006). https://doi.org/10.1007/s00772-006-0481-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00772-006-0481-0

Schlüsselwörter

Keywords

Navigation