Skip to main content
Log in

Wirkung niederfrequent gepulster Magnetfelder auf die Mikrozirkulation bei pAVK-Patienten

Randomisierte, placebokontrollierte Einfachblindstudie

Effect of low-frequency pulsating magnetic fields on microcirculation in PAOD patients

A randomized placebo-controlled single-blind trial

  • Originalarbeiten
  • Published:
Gefässchirurgie Aims and scope Submit manuscript

Zusammenfassung

Zur Untersuchung möglicher durchblutungsfördernder Effekte niederfrequent gepulster schwacher Magnetfelder, die bei gestörter Frakturheilung seit Jahrzehnten erfolgreich eingesetzt werden, wurde im placebokontrollierten Experiment bei pAVK-Patienten der Stadien IIb bis IV ein mit 4 Hz gepulstes Magnetfeld mit einer Intensität von 5 μT über eine Ganzkörper-Magnetfeldmatte appliziert. Nachweisen ließ sich in der Verumgruppe (n=30) unter einmaliger einstündiger Anwendung eine signifikante Steigerung des Laser-Doppler-Fluxes um über 50% und des tcpO2 um 17% (Messung am Fußrücken), wobei der Anstieg der Werte umso größer ist, je niedriger die Ausgangswerte sind. Für Puls und Blutdruck sowie cAMP und cGMP (im Venenblut) ließen sich keine Veränderungen feststellen. Es wurden keinerlei unerwünschte Wirkungen beobachtet.

Unter Berücksichtigung bestehender Erklärungsansätze für die Wirkung niederfrequent gepulster Magnetfelder auf den Organismus wird ein Modell entwickelt, das die Vielzahl bekannter Magnetfeldeffekte bei gleichzeitiger Nebenwirkungsfreiheit zurückführt auf die Interaktion des Magnetfeldes mit physiologischen Regulationsprozessen auf der Basis endogener elektromagnetischer Phänomene.

Abstract

To investigate possible beneficial effects on circulation of low-intensity low-frequency pulsating magnetic fields, a 5-µT magnetic field pulsed at 4 Hz was applied to PAOD patients stage IIb-IV in a placebo-controlled study design using a total body applicator. During a single 1-h treatment session in the active treatment group (n=30) there was an increase in laser Doppler flux of more than 50% and in tcpO2 of 17% (foot dorsum) whereas patients with low baseline values achieved the highest increases. No differences were found for pulse, blood pressure, cAMP, or cGMP (venous blood analysis). No adverse effects were noted.

With respect to preexisting explanations of magnetic field effects on living organisms, a theory was evolved that attributes the great variety of known effects in the absence of adverse side effects to the interaction of the magnetic field with physiologically existing regulative processes based on endogenous electromagnetic phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Basset CA (1989) Fundamental and practical aspects of therapeutic uses of pulsed electromagnetic fields (PEMFs). Crit Rev Biomed Eng 17: 451–529

    Google Scholar 

  2. Basset CA (1993) Beneficial effects of electromagnetic fields. J Cell Biochem 51: 387–393

    CAS  PubMed  Google Scholar 

  3. Bersani F, Marinelli F, Ognibebe A et al. (1997) Intramembrane protein distribution in cell cultures is affected by 50 Hz pulsed magnetic fields. Bioelectromagnetics 18: 463–469

    Article  CAS  PubMed  Google Scholar 

  4. Brestowsky M (2002) Wirkung niederfrequent gepulster Magnetfelder auf Parameter der Mikrozirkulation bei Patienten mit peripherer arterieller Verschlusskrankheit. Med. Dissertation, Medizinische Universität zu Lübeck

  5. Creutzig A, Dau D, Caspary L, Alexander K (1987) Transcutaneous oxygen pressure measured at two different electrode core temperatures in healthy volunteers and patients with arterial occlusive disease. Int J Microcirc Clin Exp 5: 373–380

    CAS  PubMed  Google Scholar 

  6. Dormandy JA, Rutherford RB (2000) Management of peripheral arterial disease (PAD) - Trans Atlantic Inter-Society Consensus (TASC). Section D: Critical limb ischemia. J Vasc Surg 31: 168–288

    Google Scholar 

  7. Erdman WJ (1960) Peripheral blood flow measurements during application of pulsed high-frequency currents. Orthopedics 2: 196–197

    Google Scholar 

  8. Giordano N, Battisti E, Geraci S et al. (2000) Analgesic-antiinflammatory effect of a 100 Hz variable magnetic field in RA. Clin Exp Rheumatol 18: 263

    CAS  PubMed  Google Scholar 

  9. Goodman EM, Greenebaum B (1991) Altered protein synthesis in a cell-free system exposed to a pulsed magnetic field. Trans Bioelectromag Soc 13: 26

    Google Scholar 

  10. Hansen EC (1993) The effects of electromagnetic fields on blood circulation. Eur J Phys Med Rehabil 3: 13–17

    Google Scholar 

  11. Hedenius P, Odeblad E, Wahlström L (1966) Some preliminary investigations on the therapeutic effect of pulsed short waves in intermittent claudication. Curr Ther Res 8: 317–320

    CAS  PubMed  Google Scholar 

  12. Heiss HW, Jäger M (1998) Effects of ULF fields on extra- and intracranial arterial and venous circulation. In: Holick MF, Jung EG (eds) Biologic effects of light. Kluwer , Boston, pp 287–295

  13. Kaada B (1987) Mediators of cutaneous vasodilatation induced by transcutaneous nerve stimulation in humans. In: Nobin A, Owman C, Arneklo-Nobin B (eds) Neuronal messengers in vascular function. Elsevier, Amsterdam, pp 475–488

  14. Kim YV, Conover DL, Lotz WG, Cleary SF (1998) Electric field-induced changes in agonist-stimulated calcium fluxes of human HL-60 leukemia cells. Bioelectromagnetics 19: 366–376

    Article  CAS  PubMed  Google Scholar 

  15. Lee EW, Maffulli N, Li CK, Chan KM (1997) Pulsed magnetic and electromagnetic fields in experimental achilles tendonitis in the rat: a prospective, randomized study. Arch Phys Med Rehabil 78: 399–404

    CAS  PubMed  Google Scholar 

  16. Mayrovitz HN, Larsen PB (1992) Effects of pulsed electromagnetic fields on skin mikrovascular blood perfusion. Wounds 4: 197–202

    Google Scholar 

  17. Miura M, Okada J (1991) Non-thermal vasodilation by radio frequency burst-type electromagnetic field radiation in the frog. J Physiol 435: 257–273

    CAS  PubMed  Google Scholar 

  18. Muehsam DJ, Pilla AA (1999) The sensitivity of cells and tissues to exogenous fields: effects of target system initial state. Bioelectrochem Bioenerg 48: 35–42

    Article  CAS  PubMed  Google Scholar 

  19. Noda Y, Mori A, Liburdy RP, Packer L (2000) Pulsed magnetic fields enhance nitric oxide synthase activity in rat cerebellum. Pathophysiology 7: 127–130

    Article  CAS  PubMed  Google Scholar 

  20. Pessina GP, Aldinucci C, Palmi M et al. (2001) Pulsed electromagnetic fields affect the intracellular calcium concentrations in human astrocytoma cells. Bioelectromagnetics 22: 503–510

    Article  CAS  PubMed  Google Scholar 

  21. Roland D, Ferder M, Kothuru R, Faierman T, Strauch B (2000) Effects of pulsed magnetic energy on a microsurgically transferred vessel. Plast Reconstr Surg 105: 1371–1374

    CAS  PubMed  Google Scholar 

  22. Salzberg CA, Cooper-Vastola SA, Perez F, Viehbeck MG, Byrne DW (1995) The effects of non-thermal pulsed electromagnetic energy on wound healing of pressure ulcers in spinal cord-injured patients: a double-blind study. Ostomy Wound Manage 41: 42–51

    CAS  PubMed  Google Scholar 

  23. Scardino MS, Swaim SF, Sartin EA et al. (1998) Evaluation of treatment with a pulsed electromagnetic field on wound healing, clinicopathologic variables, and central nervous system activity of dogs. Am J Vet Res 59: 1177–1181

    CAS  PubMed  Google Scholar 

  24. Schastnyi SA, Shchukin SI, Roslyi IM et al. (1996) Mechanism of action of electromagnetic fields biologically adequate to man. Vestn Ross Akad Med Nauk 5: 51–54

    PubMed  Google Scholar 

  25. Sontag W, Dertinger H (1998) Response of cytosolic calcium, cyclic AMP, and cyclic GMP in dimethylsulfoxide-differentiated HL-60 cells to modulated low frequency electric currents. Bioelectromagnetics 19: 452–458

    Article  CAS  PubMed  Google Scholar 

  26. Sundhagen JO, Staxrud LE, Rosen L, Kroese A (1994) Electromagnetic therapy for patients with intermittent claudication—is it effective? Tidsskr Nor Laegeforen 114: 2132–2134

    CAS  PubMed  Google Scholar 

  27. Yen-Patton GP, Patton WF, Beer DM, Jacobson BS (1988) Endothelial cell response to pulsed electromagnetic fields: stimulation of growth rate and angiogenesis in vitro. J Cell Physiol 134: 37–46

    CAS  PubMed  Google Scholar 

  28. Zhadin MN (1998) Combined action of static and alternating magnetic fields on ion motion in a macromolecule: theoretical aspects. Bioelectromagnetics 19: 279–292

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Brestowsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brestowsky, M., von Klitzing, L., Bruch, HP. et al. Wirkung niederfrequent gepulster Magnetfelder auf die Mikrozirkulation bei pAVK-Patienten. Gefässchirurgie 9, 111–116 (2004). https://doi.org/10.1007/s00772-004-0337-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00772-004-0337-4

Schlüsselwörter

Keywords

Navigation